ترغب بنشر مسار تعليمي؟ اضغط هنا

Algorithmic Number On the Forehead Protocols Yielding Dense Ruzsa-Szemer{e}di Graphs and Hypergraphs

130   0   0.0 ( 0 )
 نشر من قبل Adi Shraibman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa-Szemer{e}di graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa and Szemer{e}di. The graphs induced by this protocol have $n$ vertices, $Omega(n^2/log n)$ edges, and are decomposable into $n^{1+O(1/log log n)}$ induced matchings. Another protocol is an explicit (and slightly simpler) version of the construction of Alon, Moitra and Sudakov, producing graphs with similar properties. We also generalize the above protocols to more than three players, in order to construct dense uniform hypergraphs in which every edge lies in a positive small number of simplices.



قيم البحث

اقرأ أيضاً

Information-theoretic methods have proven to be a very powerful tool in communication complexity, in particular giving an elegant proof of the linear lower bound for the two-party disjointness function, and tight lower bounds on disjointness in the m ulti-party number-in-the-hand (NIH) model. In this paper, we study the applicability of information theoretic methods to the multi-party number-on-the-forehead model (NOF), where determining the complexity of disjointness remains an important open problem. There are two basic parts to the NIH disjointness lower bound: a direct sum theorem and a lower bound on the one-bit AND function using a beautiful connection between Hellinger distance and protocols revealed by Bar-Yossef, Jayram, Kumar and Sivakumar [BYJKS04]. Inspired by this connection, we introduce the notion of Hellinger volume. We show that it lower bounds the information cost of multi-party NOF protocols and provide a small toolbox that allows one to manipulate several Hellinger volume terms and lower bound a Hellinger volume when the distributions involved satisfy certain conditions. In doing so, we prove a new upper bound on the difference between the arithmetic mean and the geometric mean in terms of relative entropy. We then apply these new tools to obtain a lower bound on the informational complexity of the AND_k function in the NOF setting. Finally, we discuss the difficulties of proving a direct sum theorem for information cost in the NOF model.
456 - Troy Lee , Adi Shraibman 2009
We show that disjointness requires randomized communication Omega(n^{1/(k+1)}/2^{2^k}) in the general k-party number-on-the-forehead model of complexity. The previous best lower bound for k >= 3 was log(n)/(k-1). Our results give a separation between nondeterministic and randomized multiparty number-on-the-forehead communication complexity for up to k=log log n - O(log log log n) many players. Also by a reduction of Beame, Pitassi, and Segerlind, these results imply subexponential lower bounds on the size of proofs needed to refute certain unsatisfiable CNFs in a broad class of proof systems, including tree-like Lovasz-Schrijver proofs.
Consider the problem of determining whether there exists a spanning hypertree in a given k-uniform hypergraph. This problem is trivially in P for k=2, and is NP-complete for k>= 4, whereas for k=3, there exists a polynomial-time algorithm based on Lo vasz theory of polymatroid matching. Here we give a completely different, randomized polynomial-time algorithm in the case k=3. The main ingredients are a Pfaffian formula by Vaintrob and one of the authors (G.M.) for a polynomial that enumerates spanning hypertrees with some signs, and a lemma on the number of roots of polynomials over a finite field.
A traversal of a connected graph is a linear ordering of its vertices all of whose initial segments induce connected subgraphs. Traversals, and their refinements such as breadth-first and depth-first traversals, are computed by various graph searchin g algorithms. We extend the theory of generic search and breadth-first search from finite graphs to wellordered infinite graphs, recovering the notion of search trees in this context. We also prove tight upper bounds on the extent to which graph search and breadth-first search can modify the order type of the original graph, as well as characterize the traversals computed by these algorithms as lexicographically minimal.
Our main result is that every graph $G$ on $nge 10^4r^3$ vertices with minimum degree $delta(G) ge (1 - 1 / 10^4 r^{3/2} ) n$ has a fractional $K_r$-decomposition. Combining this result with recent work of Barber, Kuhn, Lo and Osthus leads to the bes t known minimum degree thresholds for exact (non-fractional) $F$-decompositions for a wide class of graphs~$F$ (including large cliques). For general $k$-uniform hypergraphs, we give a short argument which shows that there exists a constant $c_k>0$ such that every $k$-uniform hypergraph $G$ on $n$ vertices with minimum codegree at least $(1- c_k /r^{2k-1}) n $ has a fractional $K^{(k)}_r$-decomposition, where $K^{(k)}_r$ is the complete $k$-uniform hypergraph on $r$ vertices. (Related fractional decomposition results for triangles have been obtained by Dross and for hypergraph cliques by Dukes as well as Yuster.) All the above new results involve purely combinatorial arguments. In particular, this yields a combinatorial proof of Wilsons theorem that every large $F$-divisible complete graph has an $F$-decomposition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا