ﻻ يوجد ملخص باللغة العربية
We study bond percolation on the simple cubic (SC) lattice with various combinations of first, second, third, and fourth nearest-neighbors by Monte Carlo simulation. Using a single-cluster growth algorithm, we find precise values of the bond thresholds. Correlations between percolation thresholds and lattice properties are discussed, and our results show that the percolation thresholds of these and other three-dimensional lattices decrease monotonically with the coordination number $z$ quite accurately according to a power law $p_{c} sim z^{-a}$, with exponent $a = 1.111$. However, for large $z$, the threshold must approach the Bethe lattice result $p_c = 1/(z-1)$. Fitting our data and data for lattices with additional nearest neighbors, we find $p_c(z-1)=1+1.224 z^{-1/2}$.
By means of Monte Carlo simulations, we study long-range site percolation on square and simple cubic lattices with various combinations of nearest neighbors, up to the eighth neighbors for the square lattice and the ninth neighbors for the simple cub
We study bond percolation on several four-dimensional (4D) lattices, including the simple (hyper) cubic (SC), the SC with combinations of nearest neighbors and second nearest neighbors (SC-NN+2NN), the body-centered cubic (BCC), and the face-centered
In the paper random-site percolation thresholds for simple cubic lattice with sites neighborhoods containing next-next-next-nearest neighbors (4NN) are evaluated with Monte Carlo simulations. A recently proposed algorithm with low sampling for percol
We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and ti
We study numerically the geometrical properties of minimally weighted paths that appear in the negative-weight percolation (NWP) model on two-dimensional lattices assuming a combination of periodic and free boundary conditions (BCs). Each realization