ترغب بنشر مسار تعليمي؟ اضغط هنا

NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search

221   0   0.0 ( 0 )
 نشر من قبل Xuanyi Dong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural architecture search (NAS) has achieved breakthrough success in a great number of applications in the past few years. It could be time to take a step back and analyze the good and bad aspects in the field of NAS. A variety of algorithms search architectures under different search space. These searched architectures are trained using different setups, e.g., hyper-parameters, data augmentation, regularization. This raises a comparability problem when comparing the performance of various NAS algorithms. NAS-Bench-101 has shown success to alleviate this problem. In this work, we propose an extension to NAS-Bench-101: NAS-Bench-201 with a different search space, results on multiple datasets, and more diagnostic information. NAS-Bench-201 has a fixed search space and provides a unified benchmark for almost any up-to-date NAS algorithms. The design of our search space is inspired from the one used in the most popular cell-based searching algorithms, where a cell is represented as a DAG. Each edge here is associated with an operation selected from a predefined operation set. For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes all possible architectures generated by 4 nodes and 5 associated operation options, which results in 15,625 candidates in total. The training log and the performance for each architecture candidate are provided for three datasets. This allows researchers to avoid unnecessary repetitive training for selected candidate and focus solely on the search algorithm itself. The training time saved for every candidate also largely improves the efficiency of many methods. We provide additional diagnostic information such as fine-grained loss and accuracy, which can give inspirations to new designs of NAS algorithms. In further support, we have analyzed it from many aspects and benchmarked 10 recent NAS algorithms.



قيم البحث

اقرأ أيضاً

Differential Neural Architecture Search (NAS) requires all layer choices to be held in memory simultaneously; this limits the size of both search space and final architecture. In contrast, Probabilistic NAS, such as PARSEC, learns a distribution over high-performing architectures, and uses only as much memory as needed to train a single model. Nevertheless, it needs to sample many architectures, making it computationally expensive for searching in an extensive space. To solve these problems, we propose a sampling method adaptive to the distribution entropy, drawing more samples to encourage explorations at the beginning, and reducing samples as learning proceeds. Furthermore, to search fast in the multi-variate space, we propose a coarse-to-fine strategy by using a factorized distribution at the beginning which can reduce the number of architecture parameters by over an order of magnitude. We call this method Fast Probabilistic NAS (FP-NAS). Compared with PARSEC, it can sample 64% fewer architectures and search 2.1x faster. Compared with FBNetV2, FP-NAS is 1.9x - 3.5x faster, and the searched models outperform FBNetV2 models on ImageNet. FP-NAS allows us to expand the giant FBNetV2 space to be wider (i.e. larger channel choices) and deeper (i.e. more blocks), while adding Split-Attention block and enabling the search over the number of splits. When searching a model of size 0.4G FLOPS, FP-NAS is 132x faster than EfficientNet, and the searched FP-NAS-L0 model outperforms EfficientNet-B0 by 0.7% accuracy. Without using any architecture surrogate or scaling tricks, we directly search large models up to 1.0G FLOPS. Our FP-NAS-L2 model with simple distillation outperforms BigNAS-XL with advanced in-place distillation by 0.7% accuracy using similar FLOPS.
373 - Boyu Chen , Peixia Li , Baopu Li 2021
We present BN-NAS, neural architecture search with Batch Normalization (BN-NAS), to accelerate neural architecture search (NAS). BN-NAS can significantly reduce the time required by model training and evaluation in NAS. Specifically, for fast evaluat ion, we propose a BN-based indicator for predicting subnet performance at a very early training stage. The BN-based indicator further facilitates us to improve the training efficiency by only training the BN parameters during the supernet training. This is based on our observation that training the whole supernet is not necessary while training only BN parameters accelerates network convergence for network architecture search. Extensive experiments show that our method can significantly shorten the time of training supernet by more than 10 times and shorten the time of evaluating subnets by more than 600,000 times without losing accuracy.
113 - Zihao Wang , Chen Lin , Lu Sheng 2020
Recently, deep learning has been utilized to solve video recognition problem due to its prominent representation ability. Deep neural networks for video tasks is highly customized and the design of such networks requires domain experts and costly tri al and error tests. Recent advance in network architecture search has boosted the image recognition performance in a large margin. However, automatic designing of video recognition network is less explored. In this study, we propose a practical solution, namely Practical Video Neural Architecture Search (PV-NAS).Our PV-NAS can efficiently search across tremendous large scale of architectures in a novel spatial-temporal network search space using the gradient based search methods. To avoid sticking into sub-optimal solutions, we propose a novel learning rate scheduler to encourage sufficient network diversity of the searched models. Extensive empirical evaluations show that the proposed PV-NAS achieves state-of-the-art performance with much fewer computational resources. 1) Within light-weight models, our PV-NAS-L achieves 78.7% and 62.5% Top-1 accuracy on Kinetics-400 and Something-Something V2, which are better than previous state-of-the-art methods (i.e., TSM) with a large margin (4.6% and 3.4% on each dataset, respectively), and 2) among median-weight models, our PV-NAS-M achieves the best performance (also a new record)in the Something-Something V2 dataset.
Efficient search is a core issue in Neural Architecture Search (NAS). It is difficult for conventional NAS algorithms to directly search the architectures on large-scale tasks like ImageNet. In general, the cost of GPU hours for NAS grows with regard to training dataset size and candidate set size. One common way is searching on a smaller proxy dataset (e.g., CIFAR-10) and then transferring to the target task (e.g., ImageNet). These architectures optimized on proxy data are not guaranteed to be optimal on the target task. Another common way is learning with a smaller candidate set, which may require expert knowledge and indeed betrays the essence of NAS. In this paper, we present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner. Our method is based on an interesting observation that the learning speed for blocks in deep neural networks is related to the difficulty of recognizing distinct categories. We carefully design a progressive data adapted pruning strategy for efficient architecture search. It will quickly trim low performed blocks on a subset of target dataset (e.g., easy classes), and then gradually find the best blocks on the whole target dataset. At this time, the original candidate set becomes as compact as possible, providing a faster search in the target task. Experiments on ImageNet verify the effectiveness of our approach. It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint. It supports an argument search space (i.e., more candidate blocks) to efficiently search the best-performing architecture.
94 - Lewei Yao , Hang Xu , Wei Zhang 2019
The state-of-the-art object detection method is complicated with various modules such as backbone, feature fusion neck, RPN and RCNN head, where each module may have different designs and structures. How to leverage the computational cost and accurac y trade-off for the structural combination as well as the modular selection of multiple modules? Neural architecture search (NAS) has shown great potential in finding an optimal solution. Existing NAS works for object detection only focus on searching better design of a single module such as backbone or feature fusion neck, while neglecting the balance of the whole system. In this paper, we present a two-stage coarse-to-fine searching strategy named Structural-to-Modular NAS (SM-NAS) for searching a GPU-friendly design of both an efficient combination of modules and better modular-level architecture for object detection. Specifically, Structural-level searching stage first aims to find an efficient combination of different modules; Modular-level searching stage then evolves each specific module and pushes the Pareto front forward to a faster task-specific network. We consider a multi-objective search where the search space covers many popular designs of detection methods. We directly search a detection backbone without pre-trained models or any proxy task by exploring a fast training from scratch strategy. The resulting architectures dominate state-of-the-art object detection systems in both inference time and accuracy and demonstrate the effectiveness on multiple detection datasets, e.g. halving the inference time with additional 1% mAP improvement compared to FPN and reaching 46% mAP with the similar inference time of MaskRCNN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا