ﻻ يوجد ملخص باللغة العربية
Personalized recommendation is ubiquitous, playing an important role in many online services. Substantial research has been dedicated to learning vector representations of users and items with the goal of predicting a users preference for an item based on the similarity of the representations. Techniques range from classic matrix factorization to more recent deep learning based methods. However, we argue that existing methods do not make full use of the information that is available from user-item interaction data and the similarities between user pairs and item pairs. In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process. Multi-GCCF not only expressively models the high-order information via a partite user-item interaction graph, but also integrates the proximal information by building and processing user-user and item-item graphs. Furthermore, we consider the intrinsic difference between user nodes and item nodes when performing graph convolution on the bipartite graph. We conduct extensive experiments on four publicly accessible benchmarks, showing significant improvements relative to several state-of-the-art collaborative filtering and graph neural network-based recommendation models. Further experiments quantitatively verify the effectiveness of each component of our proposed model and demonstrate that the learned embeddings capture the important relationship structure.
In recent years, graph neural networks (GNNs) have shown powerful ability in collaborative filtering, which is a widely adopted recommendation scenario. While without any side information, existing graph neural network based methods generally learn a
User-item interactions in recommendations can be naturally de-noted as a user-item bipartite graph. Given the success of graph neural networks (GNNs) in graph representation learning, GNN-based C methods have been proposed to advance recommender syst
Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that
The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Neve
Two main challenges in recommender systems are modeling users with heterogeneous taste, and providing explainable recommendations. In this paper, we propose the neural Attentive Multi-Persona Collaborative Filtering (AMP-CF) model as a unified soluti