Spin selectivity through chiral polyalanine monolayers on semiconductors


الملخص بالإنكليزية

Electrical generation of polarized spins in nonmagnetic materials is of great interest for the underlying physics and device potential. One such mechanism is chirality-induced spin selectivity (CISS), with which structural chirality leads to different electric conductivities for electrons of opposite spins. The resulting effect of spin filtering has been reported for a number of chiral molecules. However, the microscopic mechanism and manifestation of CISS in practical device structures remain controversial; in particular, the Onsager relation is understood to preclude linear-response detection of CISS by a ferromagnet. Here, we report direct evidence of CISS in two-terminal devices of chiral molecules on the magnetic semiconductor (Ga,Mn)As: In vertical heterojunctions of (Ga,Mn)As/AHPA-L molecules/Au, we observed characteristic linear- and nonlinear-response magnetoconductance, which directly verifies spin filtering by the AHPA-L molecules and spin detection by the (Ga,Mn)As. The results constitute definitive signature of CISS-induced spin valve effect, a core spintronic functionality, in apparent violation of the Onsager reciprocity. The results present a promising route to semiconductor spintronics free of any magnetic material.

تحميل البحث