ﻻ يوجد ملخص باللغة العربية
The Whitham approach is a well-studied method to describe non-linear integrable systems. Although approximate in nature, its results may predict rather accurately the time evolution of such systems in many situations given initial conditions. A similarly powerful approach has recently emerged that is applicable to quantum integrable systems, namely the generalized hydrodynamics approach. This paper aims at showing that the Whitham approach is the semiclassical limit of the generalized hydrodynamics approach by connecting the two formal methods explicitly on the example of the Lieb-Liniger model on the quantum side to the non-linear Schr{o}dinger equation on the classical side in the $cto0$ limit, $c$ being the interaction parameter. We show how quantum expectation values may be computed in this limit based on the connection established here which is mentioned above.
We develop a method for the calculation of vacuum expectation values of local operators in the Lieb-Liniger model. This method is based on a set of new identities obtained using integrability and effective theory (``bosonization) description. We use
We study a matrix element of the field operator in the Lieb-Liniger model using the Bethe ansatz technique coupled with a functional approach to compute Slavnov determinants. We obtain the matrix element exactly in the thermodynamic limit for any cou
The repulsive Lieb-Liniger model can be obtained as the non-relativistic limit of the Sinh-Gordon model: all physical quantities of the latter model (S-matrix, Lagrangian and operators) can be put in correspondence with those of the former. We use th
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt e
Taking advantage of an exact mapping between a relativistic integrable model and the Lieb-Liniger model we present a novel method to compute expectation values in the Lieb-Liniger Bose gas both at zero and finite temperature. These quantities, releva