ﻻ يوجد ملخص باللغة العربية
We study the effects of assisted tunneling or correlated hopping between next nearest neighbours in a two species Bose-Hubbard system. The system is the bosonic analong of the fermionic system studied in Phys. Rev. Lett. {bf 116}, 225303 (2016). Using a combination of cluster mean field theory, exact diagonlization and analytical results, a rich phase diagram is determined including a pair superfluid phase as well as a superfluid quantum droplet phase. The former is the result of the interplay between single particle and correlated hopping, while the latter is the effect of large correlated hopping.
Bosonic lattice systems with non-trivial interactions represent an intriguing platform to study exotic phases of matter. Here, we study the effects of extended correlated hopping processes in a system of bosons trapped in a lattice geometry. The inte
We investigate the effects of an extended Bose-Hubbard model with a long range hopping term on the Mott insulator-superfluid quantum phase transition. We consider the effects of a power law decaying hopping term and show that the Mott phase is shrink
One of the challenging goals in the studies of many-body physics with ultracold atoms is the creation of a topological $p_{x} + ip_{y}$ superfluid for identical fermions in two dimensions (2D). The expectations of reaching the critical temperature $T
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the per
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC re