A Symmetry Principle has been shown to augment unambiguously the Einstein Field Equations, promoting the whole closed-string massless NS-NS sector to stringy graviton fields. Here we consider its weak field approximation, take a non-relativistic limit, and derive the stringy augmentation of Newton Gravity: [ begin{array}{lll} {bf{ abla}^{2}Phi}=4pi G rho+bf{H}{bf{cdot}}bf{H},, quad&qquadbf{ abla}bf{cdot}bf{H}=0,, quad&qquad {bf{ abla}bf{times}bf{H}}=4pi G, bf{K},. end{array} ] Not only the mass density $rho$ but also the current density $mathbf{K}$ is intrinsic to matter. Sourcing $mathbf{H}$ which is of NS-NS $H$-flux origin, $mathbf{K}$ is nontrivial if the matter is `stringy. $mathbf{H}$ contributes quadratically to the Newton potential, but otherwise is decoupled from the point particle dynamics, i.e. $bf{ddot{x}}=-bf{ abla}Phi$. We define `stringization analogous to magnetization and discuss regular as well as monopole-like singular solutions.