ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dynamic Process Reference Model for Sparse Networks with Reciprocity

120   0   0.0 ( 0 )
 نشر من قبل Carter Butts
 تاريخ النشر 2019
والبحث باللغة English
 تأليف Carter T. Butts




اسأل ChatGPT حول البحث

Many social and other networks exhibit stable size scaling relationships, such that features such as mean degree or reciprocation rates change slowly or are approximately constant as the number of vertices increases. Statistical network models built on top of simple Bernoulli baseline (or reference) measures often behave unrealistically in this respect, leading to the development of sparse reference models that preserve features such as mean degree scaling. In this paper, we generalize recent work on the micro-foundations of such reference models to the case of sparse directed graphs with non-vanishing reciprocity, providing a dynamic process interpretation of the emergence of stable macroscopic behavior.



قيم البحث

اقرأ أيضاً

121 - Carter T. Butts 2018
Exponential family random graph models (ERGMs) can be understood in terms of a set of structural biases that act on an underlying reference distribution. This distribution determines many aspects of the behavior and interpretation of the ERGM familie s incorporating it. One important innovation in this area has been the development of an ERGM reference model that produces realistic behavior when generalized to sparse networks of varying size. Here, we show that this model can be derived from a latent dynamic process in which tie formation takes place within small local settings between which individuals move. This derivation provides one possible micro-process interpretation of the sparse ERGM reference model, and sheds light on the conditions under which constant mean degree scaling can emerge.
Models of dynamic networks --- networks that evolve over time --- have manifold applications. We develop a discrete-time generative model for social network evolution that inherits the richness and flexibility of the class of exponential-family rando m graph models. The model --- a Separable Temporal ERGM (STERGM) --- facilitates separable modeling of the tie duration distributions and the structural dynamics of tie formation. We develop likelihood-based inference for the model, and provide computational algorithms for maximum likelihood estimation. We illustrate the interpretability of the model in analyzing a longitudinal network of friendship ties within a school.
We propose a latent topic model with a Markovian transition for process data, which consist of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem solv ing items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinees latent state. Using topic transition probabilities along with response times enables us to capture examinees learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem solving item in 2012 Programme for International Student Assessment (PISA 2012).
Its conceptual appeal and effectiveness has made latent factor modeling an indispensable tool for multivariate analysis. Despite its popularity across many fields, there are outstanding methodological challenges that have hampered practical deploymen ts. One major challenge is the selection of the number of factors, which is exacerbated for dynamic factor models, where factors can disappear, emerge, and/or reoccur over time. Existing tools that assume a fixed number of factors may provide a misguided representation of the data mechanism, especially when the number of factors is crudely misspecified. Another challenge is the interpretability of the factor structure, which is often regarded as an unattainable objective due to the lack of identifiability. Motivated by a topical macroeconomic application, we develop a flexible Bayesian method for dynamic factor analysis (DFA) that can simultaneously accommodate a time-varying number of factors and enhance interpretability without strict identifiability constraints. To this end, we turn to dynamic sparsity by employing Dynamic Spike-and-Slab (DSS) priors within DFA. Scalable Bayesian EM estimation is proposed for fast posterior mode identification via rotations to sparsity, enabling Bayesian data analysis at scales that would have been previously time-consuming. We study a large-scale balanced panel of macroeconomic variables covering multiple facets of the US economy, with a focus on the Great Recession, to highlight the efficacy and usefulness of our proposed method.
We address the problem of dynamic variable selection in time series regression with unknown residual variances, where the set of active predictors is allowed to evolve over time. To capture time-varying variable selection uncertainty, we introduce ne w dynamic shrinkage priors for the time series of regression coefficients. These priors are characterized by two main ingredients: smooth parameter evolutions and intermittent zeroes for modeling predictive breaks. More formally, our proposed Dynamic Spike-and-Slab (DSS) priors are constructed as mixtures of two processes: a spike process for the irrelevant coefficients and a slab autoregressive process for the active coefficients. The mixing weights are themselves time-varying and depend on lagged values of the series. Our DSS priors are probabilistically coherent in the sense that their stationary distribution is fully known and characterized by spike-and-slab marginals. For posterior sampling over dynamic regression coefficients, model selection indicators as well as unknown dynamic residual variances, we propose a Dynamic SSVS algorithm based on forward-filtering and backward-sampling. To scale our method to large data sets, we develop a Dynamic EMVS algorithm for MAP smoothing. We demonstrate, through simulation and a topical macroeconomic dataset, that DSS priors are very effective at separating active and noisy coefficients. Our fast implementation significantly extends the reach of spike-and-slab methods to large time series data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا