ﻻ يوجد ملخص باللغة العربية
We consider the linear regression problem of estimating a $p$-dimensional vector $beta$ from $n$ observations $Y = X beta + W$, where $beta_j stackrel{text{i.i.d.}}{sim} pi$ for a real-valued distribution $pi$ with zero mean and unit variance, $X_{ij} stackrel{text{i.i.d.}}{sim} mathcal{N}(0,1)$, and $W_istackrel{text{i.i.d.}}{sim} mathcal{N}(0, sigma^2)$. In the asymptotic regime where $n/p to delta$ and $ p/ sigma^2 to mathsf{snr}$ for two fixed constants $delta, mathsf{snr}in (0, infty)$ as $p to infty$, the limiting (normalized) minimum mean-squared error (MMSE) has been characterized by the MMSE of an associated single-letter (additive Gaussian scalar) channel. In this paper, we show that if the MMSE function of the single-letter channel converges to a step function, then the limiting MMSE of estimating $beta$ in the linear regression problem converges to a step function which jumps from $1$ to $0$ at a critical threshold. Moreover, we establish that the limiting mean-squared error of the (MSE-optimal) approximate message passing algorithm also converges to a step function with a larger threshold, providing evidence for the presence of a computational-statistical gap between the two thresholds.
We study the statistical problem of estimating a rank-one sparse tensor corrupted by additive Gaussian noise, a model also known as sparse tensor PCA. We show that for Bernoulli and Bernoulli-Rademacher distributed signals and emph{for all} sparsity
We establish a phase transition known as the all-or-nothing phenomenon for noiseless discrete channels. This class of models includes the Bernoulli group testing model and the planted Gaussian perceptron model. Previously, the existence of the all-or
In high-dimensional linear regression, would increasing effect sizes always improve model selection, while maintaining all the other conditions unchanged (especially fixing the sparsity of regression coefficients)? In this paper, we answer this quest
Comparing probability distributions is an indispensable and ubiquitous task in machine learning and statistics. The most common way to compare a pair of Borel probability measures is to compute a metric between them, and by far the most widely used n
We consider constraints on primordial black holes (PBHs) in the mass range $( 10^{-18}text{-}10^{15} ),M_{odot}$ if the dark matter (DM) comprises weakly interacting massive particles (WIMPs) which form halos around them and generate $gamma$-rays by