ﻻ يوجد ملخص باللغة العربية
Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that [ P(x_1,ldots,x_n,x_1^{-1},ldots,x_n^{-1}) =Q(x_1+x_1^{-1},ldots,x_n+x_n^{-1}). ] We denote this polynomial $Q$ by $Phi_n(P)$ and show that $Phi_n$ is an epimorphism of algebras. We compute $Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $Phi_n(operatorname{s}_{lambda/mu}^{(2n)})$, where $operatorname{s}_{lambda/mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,ldots,x_n,x^{-1}_1,ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.
We prove a positivity result for interpolation polynomials that was conjectured by Knop and Sahi. These polynomials were first introduced by Sahi in the context of the Capelli eigenvalue problem for Jordan algebras, and were later shown to be related
We analyze the structure of the algebra N of symmetric polynomials in non-commuting variables in so far as it relates to its commutative counterpart. Using the place-action of the symmetric group, we are able to realize the latter as the invariant po
The braid arrangement is the Coxeter arrangement of the type $A_ell$. The Shi arrangement is an affine arrangement of hyperplanes consisting of the hyperplanes of the braid arrangement and their parallel translations. In this paper, we give an explic
By considering the specialisation $s_{lambda}(1,q,q^2,...,q^{n-1})$ of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape $lambda$ in terms of two properties of the boxes in the diagram f
In the 90s a collection of Plethystic operators were introduced in [3], [7] and [8] to solve some Representation Theoretical problems arising from the Theory of Macdonald polynomials. This collection was enriched in the research that led to the resul