ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric polynomials in the symplectic alphabet and their expression via Dickson--Zhukovsky variables

223   0   0.0 ( 0 )
 نشر من قبل Egor Maximenko
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that [ P(x_1,ldots,x_n,x_1^{-1},ldots,x_n^{-1}) =Q(x_1+x_1^{-1},ldots,x_n+x_n^{-1}). ] We denote this polynomial $Q$ by $Phi_n(P)$ and show that $Phi_n$ is an epimorphism of algebras. We compute $Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $Phi_n(operatorname{s}_{lambda/mu}^{(2n)})$, where $operatorname{s}_{lambda/mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,ldots,x_n,x^{-1}_1,ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.



قيم البحث

اقرأ أيضاً

We prove a positivity result for interpolation polynomials that was conjectured by Knop and Sahi. These polynomials were first introduced by Sahi in the context of the Capelli eigenvalue problem for Jordan algebras, and were later shown to be related to Jack polynomials by Knop-Sahi and Okounkov-Olshanski. The positivity result proved here is an inhomogeneous generalization of Macdonalds positivity conjecture for Jack polynomials. We also formulate and prove the non-symmetric version of the Knop-Sahi conjecture, and in fact we deduce everything from an even stronger positivity result. This last result concerns certain inhomogeneous analogues of ordinary monomials that we call bar monomials. Their positivity involves in an essential way a new partial order on compositions that we call the bar order, and a new operation that we call a glissade.
We analyze the structure of the algebra N of symmetric polynomials in non-commuting variables in so far as it relates to its commutative counterpart. Using the place-action of the symmetric group, we are able to realize the latter as the invariant po lynomials inside the former. We discover a tensor product decomposition of N analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups.
The braid arrangement is the Coxeter arrangement of the type $A_ell$. The Shi arrangement is an affine arrangement of hyperplanes consisting of the hyperplanes of the braid arrangement and their parallel translations. In this paper, we give an explic it basis construction for the derivation module of the cone over the Shi arrangement. The essential ingredient of our recipe is the Bernoulli polynomials.
By considering the specialisation $s_{lambda}(1,q,q^2,...,q^{n-1})$ of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape $lambda$ in terms of two properties of the boxes in the diagram f or $lambda$. Using specialisations of symplectic and orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for the number of semistandard symplectic and orthogonal $lambda$-tableaux.
In the 90s a collection of Plethystic operators were introduced in [3], [7] and [8] to solve some Representation Theoretical problems arising from the Theory of Macdonald polynomials. This collection was enriched in the research that led to the resul ts which appeared in [5], [6] and [9]. However since some of the identities resulting from these efforts were eventually not needed, this additional work remained unpublished. As a consequence of very recent publications [4], [11], [19], [20], [21], a truly remarkable expansion of this theory has taken place. However most of this work has appeared in a language that is virtually inaccessible to practitioners of Algebraic Combinatorics. Yet, these developments have led to a variety of new conjectures in [2] in the Combinatorics and Symmetric function Theory of Macdonald Polynomials. The present work results from an effort to obtain in an elementary and accessible manner all the background necessary to construct the symmetric function side of some of these new conjectures. It turns out that the above mentioned unpublished results provide precisely the tools needed to carry out this project to its completion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا