ترغب بنشر مسار تعليمي؟ اضغط هنا

PandaX limits on light dark matter with light mediator in the singlet extension of MSSM

96   0   0.0 ( 0 )
 نشر من قبل Wenyu Wang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the latest PandaX limits on light dark matter (DM) with light mediator, we check the implication on the parameter space of the general singlet extension of MSSM (without $Z_3$ symmetry), which can have a sizable DM self-interaction to solve the small-scale structure problem. We find that the PandaX limits can stringently constrain such a paramter space, depending on the coupling $lambda$ between the singlet and doublet Higgs fields. For the singlet extension of MSSM with $Z_3$ symmetry, the so-called NMSSM, we also demonstrate the PandaX constraints on its parameter space which gives a light DM with correct relic density but without sufficient self-interaction to solve the small-scale structure problem. We find that in this NMSSM the GeV dark matter with a sub-GeV mediator has been stringently constrained.



قيم البحث

اقرأ أيضاً

We search for nuclear recoil signals of dark matter models with a light mediator in PandaX-II, a direct detection experiment in China Jinping underground Laboratory. Using data collected in 2016 and 2017 runs, corresponding to a total exposure of 54 ton day, we set upper limits on the zero-momentum dark matter-nucleon cross section. These limits have a strong dependence on the mediator mass when it is comparable to or below the typical momentum transfer. We apply our results to constrain self-interacting dark matter models with a light mediator mixing with standard model particles, and set strong limits on the model parameter space for the dark matter mass ranging from $5~{rm GeV}$ to $10~{rm TeV}$.
We investigate the thermal cosmology and terrestrial and astrophysical phenomenology of a sub-GeV hadrophilic dark sector. The specific construction explored in this work features a Dirac fermion dark matter candidate interacting with a light scalar mediator that dominantly couples to the up-quark. The correct freeze-out relic abundance may be achieved via dark matter annihilation directly to hadrons or through secluded annihilation to scalar mediators. A rich and distinctive phenomenology is present in this scenario, with probes arising from precision meson decays, proton beam dump experiments, colliders, direct detection experiments, supernovae, and nucleosynthesis. In the future, experiments such as NA62, REDTOP, SHiP, SBND, and NEWS-G will be able to explore a significant portion of the cosmologically motivated parameter space.
Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibili ty of light selectons and smuons, and of light higgsino- or wino-like charginos. In addition to the latest limits from direct and indirect detection of dark matter, ATLAS and CMS constraints on electroweak-inos and on sleptons are taken into account using a simplified models framework. Measurements of the properties of the Higgs boson at 125 GeV, which constrain amongst others the invisible decay of the Higgs boson into a pair of neutralinos, are also implemented in the analysis. We show that viable neutralino dark matter can be achieved for masses as low as 15 GeV. In this case, light charginos close to the LEP bound are required in addition to light right-chiral staus. Significant deviations are observed in the couplings of the 125 GeV Higgs boson. These constitute a promising way to probe the light neutralino dark matter scenario in the next run of the LHC.
We discuss how to consistently use Effective Field Theories (EFTs) to set universal bounds on heavy-mediator Dark Matter at colliders, without prejudice on the model underlying a given effective interaction. We illustrate the method for a Majorana fe rmion, universally coupled to the Standard Model quarks via a dimension-6 axial-axial four-fermion operator. We recast the ATLAS mono-jet analysis and show that a considerable fraction of the parameter space, seemingly excluded by a naive EFT interpretation, is actually still unexplored. Consistently set EFT limits can be reinterpreted in any specific underlying model. We provide two explicit examples for the chosen operator and compare the reach of our model-independent method with that obtainable by dedicated analyses.
134 - A. Hebbar , G. Lazarides , Q.Shafi 2017
We present $psi$MSSM, a model based on a $U(1)_{psi}$ extension of the minimal supersymmetric standard model. The gauge symmetry $U(1)_{psi}$, also known as $U(1)_N$, is a linear combination of the $U(1)_chi$ and $U(1)_psi$ subgroups of $E_6$. The mo del predicts the existence of three sterile neutrinos with masses $lesssim 0.1~{rm eV}$, if the $U(1)_{psi}$ breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is $Delta N_{ u}simeq 0.29$. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the $U(1)_{psi}$ breaking scale is increased to $10^3~{rm TeV}$, the sterile neutrinos, which are stable on account of a $Z_2$ symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from $U(1)_{psi}$. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known $mu$ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of $U(1)_{psi}$ produces superconducting strings that may be present in our galaxy. A $U(1)$ R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا