ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a new class of state space models based on shot-noise simulation representations of non-Gaussian Levy-driven linear systems, represented as stochastic differential equations. In particular a conditionally Gaussian version of the models is proposed that is able to capture heavy-tailed non-Gaussianity while retaining tractability for inference procedures. We focus on a canonical class of such processes, the $alpha$-stable Levy processes, which retain important properties such as self-similarity and heavy-tails, while emphasizing that broader classes of non-Gaussian Levy processes may be handled by similar methodology. An important feature is that we are able to marginalise both the skewness and the scale parameters of these challenging models from posterior probability distributions. The models are posed in continuous time and so are able to deal with irregular data arrival times. Example modelling and inference procedures are provided using Rao-Blackwellised sequential Monte Carlo applied to a two-dimensional Langevin model, and this is tested on real exchange rate data.
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncer
An alternative to current mainstream preprocessing methods is proposed: Value Selection (VS). Unlike the existing methods such as feature selection that removes features and instance selection that eliminates instances, value selection eliminates the
Consider a spectrally positive Stable($1+alpha$) process whose jumps we interpret as lifetimes of individuals. We mark the jumps by continuous excursions assigning sizes varying during the lifetime. As for Crump-Mode-Jagers processes (with characteri
Consider a stationary real-valued time series ${X_n}_{n=0}^{infty}$ with a priori unknown distribution. The goal is to estimate the conditional expectation $E(X_{n+1}|X_0,..., X_n)$ based on the observations $(X_0,..., X_n)$ in a pointwise consistent
This paper introduces a generalization of the so-called space-fractional Poisson process by extending the difference operator acting on state space present in the associated difference-differential equations to a much more general form. It turns out