ﻻ يوجد ملخص باللغة العربية
Given discrete groups $Gamma subset Delta$ we characterize $(Gamma,sigma)$-invariant spaces that are also invariant under $Delta$. This will be done in terms of subspaces that we define using an appropriate Zak transform and a particular partition of the underlying group. On the way, we obtain a new characterization of principal $(Gamma,sigma)$-invariant spaces in terms of the Zak transform of its generator. This result is in the spirit of the analogous in the context of shift-invariant spaces in terms of the Fourier transform, which is very well-known. As a consequence of our results, we give a solution for the problem of finding the $(Gamma,sigma)$-invariant space nearest - in the sense of least squares - to a given set of data.
Let $G$ be a compact Lie group acting smoothly on a smooth, compact manifold $M$, let $P in psi^m(M; E_0, E_1)$ be a $G$--invariant, classical pseudodifferential operator acting between sections of two vector bundles $E_i to M$, $i = 0,1$, and let $a
Let $A$ be a normal operator in a Hilbert space $mathcal{H}$, and let $mathcal{G} subset mathcal{H}$ be a countable set of vectors. We investigate the relations between $A$, $mathcal{G}$ , and $L$ that makes the system of iterations ${A^ng: gin mathc
In this paper we study chaotic behavior of actions of a countable discrete group acting on a compact metric space by self-homeomorphisms. For actions of a countable discrete group G, we introduce local weak mixing and Li-Yorke chaos; and prove that
Let $H_3(Bbb R)$ denote the 3-dimensional real Heisenberg group. Given a family of lattices $Gamma_1supsetGamma_2supsetcdots$ in it, let $T$ stand for the associated uniquely ergodic $H_3(Bbb R)$-{it odometer}, i.e. the inverse limit of the $H_3(Bbb
We establish basic properties of a sheaf of graded algebras canonically associated to every relative affine scheme $f : X rightarrow S$ endowed with an action of the additive group scheme $mathbb{G}_{ a,S}$ over a base scheme or algebraic space $S$,