ﻻ يوجد ملخص باللغة العربية
Studies were made into the arise and an evolution of the beam breakup (BBU) instability in a rectangular dielectric resonator under excitation by a sequence of relativistic electron bunches. The dielectric resonator is a metal rectangular waveguide $R_{26}$ $(45mmtimes 90mm)$ with Teflon dielectric slabs $8.2mm$ thick (dielectric constant $varepsilon=2.051$) located along the wide side of the resonator. The wavelength of the $LM_{21}$ operating mode having a symmetric profile of the longitudinal electric field component is $53.2mm$. The electron energy of bunches is $4.5MeV$ , the charge of each bunch is $6.4nC$, the bunch repetition period is equal to twice the wavelength of the $LM_{21}$ mode. By the use of numerical PIC simulations, the charge losses of electron bunches on the dielectric plates were investigated as the bunches were displaced relative to the cavity axis. It is found that the charge losses on the dielectric slabs due to the BBU instability do not exceed $5%$. When the bunch repetition period is changed to a multiple of another eigenfrequency (e.g., the $LM_{11}$ mode), the charge losses of drive bunches do not change appreciably.
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We
We show theoretically that the characteristic modes of dielectric resonator antennas (DRAs) must be capacitive in the low frequency limit, and show that as a consequence of this constraint and the Poincar{e} Separation Theorem, the modes of any DRA c
We show that global lower bounds to the mode volume of a dielectric resonator can be computed via Lagrangian duality. State-of-the-art designs rely on sharp tips, but such structures appear to be highly sub-optimal at nanometer-scale feature sizes, a
Waveguide characterization of dielectric materials is a convenient and broadband approach for measuring dielectric constant. In conventional microwave measurements, material samples are usually mechanically shaped to fit the waveguide opening and mea
We consider the calculation of electromagnetic fields generated by an electron bunch passing through an anisotropic transversally non-homogeneous vacuum chamber of round or rectangular cross-section with translational symmetry in the beam direction.