ﻻ يوجد ملخص باللغة العربية
Einsteins equations of general relativity (GR) can describe the connection between events within a given hypervolume of size $L$ larger than the Planck length $L_P$ in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the Riemann curvature tensor. At low energies (when $L gg L_P$), these connections behave like an exchange of a virtual graviton with wavelength $lambda_G=L$ as if gravitation were an emergent physical property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition of events or space--times become indistinguishable. These properties of Einsteins equations can find connections with the novel picture of quantum gravity (QG) known as the ``Einstein--Rosen (ER)=Einstein--Podolski--Rosen (EPR) (ER = EPR) conjecture proposed by Susskind and Maldacena in Anti-de-Sitter (AdS) space--times in their equivalence with conformal field theories (CFTs). In this scenario, non-traversable wormhole connections of two or more distant events in space--time through Einstein--Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be equivalent to events connected with non-local Einstein--Podolski--Rosen (EPR) entangled states that instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR conjecture is valid, it can be extended to other different types of space--times and that gravity and space--time could be emergent physical quantities if the exchange of a virtual graviton between events can be considered connected by ER wormholes equivalent to entanglement connections.
In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, t
We study how quantum correlations survive at large scales in spite of their exposition to stochastic backgrounds of gravitational waves. We consider Einstein-Podolski-Rosen (EPR) correlations built up on the polarizations of photon pairs and evaluate
We study a static, spherically symmetric wormhole model whose metric coincides with that of the so-called Ellis wormhole but the material source of gravity consists of a perfect fluid with negative density and a source-free radial electric or magneti
We propose an approach to induced gravity, or Sakharovs metrical elasticity, which requires only an affine spacetime that accommodates scalar fields. The setup provides the induction of metric gravity from a pure affine action, and it is established
We present a simple static spacetime which describes a spherically symmetric traversable wormhole characterized by a length parameter $l$ and reduces to Minkowski in the limit $lto 0$. The wormhole connects two distinct asymptotically flat regions wi