ﻻ يوجد ملخص باللغة العربية
We consider anisotropic cosmologies in a particular shift-symmetric Horndeski theory containing the $G^{mu u}partial_muphi partial_ uphi$ coupling, where $G^{mu u}$ is the Einstein tensor. This theory admits stable in the future self-accelerating cosmologies whose tensor perturbations propagate with the velocity very close to the speed of light such that the theory agrees with the gravity wave observations. Surprisingly, we find that the anisotropies within the Bianchi I homogeneous spacetime model are screened at early time by the scalar charge, whereas at late times they are damped in the usual way. Therefore, contrary to what one would normally expect, the early state of the universe in the theory cannot be anisotropic and (locally) homogeneous in the absence of spatial curvature. The early universe cannot be isotropic either, because it should then be unstable with respect to inhomogeneous perturbations. As a result, the early universe should be inhomogeneous. At the same time, we find that in the spatially curved Bianchi IX case the anisotropies can be strong at early times even in the presence of a scalar charge.
Scalar-tensor theories are frequently only consistent with fifth force constraints in the presence of a screening mechanism, namely in order to suppress an otherwise unacceptably large coupling between the scalar and ordinary matter. Here we investig
Attempts at constraining theories of late time accelerated expansion often assume broad priors for the parameters in their phenomenological description. Focusing on shift-symmetric scalar-tensor theories with standard gravitational wave speed, we sho
We show that starting from initial conditions with stable perturbations, evolution of a galileon scalar field results in the appearance of a ghost later on. To demonstrate this, we consider a theory with k-essence and cubic galileon Lagrangians on a
In this paper, we investigate the AC charge transport in the holographic Horndeski gravity and identify a metal-semiconductor like transition that is driven by the Horndeski coupling. Moreover, we fit our numeric data by the Drude formula in slow relaxation cases.
We present the public version of hi_class (www.hiclass-code.net), an extension of the Boltzmann code CLASS to a broad ensemble of modifications to general relativity. In particular, hi_class can calculate predictions for models based on Horndeskis th