ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic number fields generated by Frobenius-Perron dimensions in fusion rings

68   0   0.0 ( 0 )
 نشر من قبل Andrew Schopieray
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

From a unifying lemma concerning fusion rings, we prove a collection of number-theoretic results about fusion, braided, and modular tensor categories. First, we prove that every fusion ring has a dimensional grading by an elementary abelian 2-group. As a result, we bound the order of the multiplicative central charge of arbitrary modular tensor categories. We also introduce Galois-invariant subgroups of the Witt group of nondegenerately braided fusion categories corresponding to algebraic number fields generated by Frobenius-Perron dimensions. Lastly, we provide a complete description of the fields generated by the Frobenius-Perron dimensions of simple objects in $mathcal{C}(mathfrak{g},k)$, the modular tensor categories arising from the representation theory of quantum groups at roots of unity, as well as the fields generated by their Verlinde eigenvalues.



قيم البحث

اقرأ أيضاً

We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.
117 - J.M. Chen , Z.B. Gao , E. Wicks 2019
The Frobenius-Perron theory of an endofunctor of a $Bbbk$-linear category (recently introduced in cite{CG}) provides new invariants for abelian and triangulated categories. Here we study Frobenius-Perron type invariants for derived categories of comm utative and noncommutative projective schemes. In particular, we calculate the Frobenius-Perron dimension for domestic and tubular weighted projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Kodaira dimensions, and provide examples. We apply this theory to the derived categories associated to certain Artin-Schelter regular and finite-dimensional algebras.
71 - Victor Ostrik 2018
We give a nontrivial lower bound for global dimension of a spherical fusion category.
In arXiv:1910.12059 Liu, Palcoux and Wu proved a remarkable necessary condition for a fusion ring to admit a unitary categorification, by constructing invariants of the fusion ring that have to be positive if it is unitarily categorifiable. The main goal of this note is to provide a somewhat more direct proof of this result. In the last subsection we discuss integrality properties of the Liu-Palcoux-Wu invariants.
For any positive integers $r$, $s$, $m$, $n$, an $(r,s)$-order $(n,m)$-dimensional rectangular tensor ${cal A}=(a_{i_1cdots i_r}^{j_1cdots j_s}) in ({mathbb R}^n)^rtimes ({mathbb R}^m)^s$ is called partially symmetric if it is invariant under any per mutation on the lower $r$ indexes and any permutation on the upper $s$ indexes. Such partially symmetric rectangular tensor arises naturally in studying directed hypergraphs. Ling and Qi [Front. Math. China, 2013] first studied the $(p,q)$-spectral radius (or singular values) and proved a Perron-Fronbenius theorem for such tensors when both $p,q geq r+s$. We improved their results by extending to all $(p,q)$ satisfying $frac{r}{p} +frac{s}{q}leq 1$. We also proved the Perron-Fronbenius theorem for general nonnegative $(r,s)$-order $(n,m)$-dimensional rectangular tensors when $frac{r}{p}+frac{s}{q}>1$. We essentially showed that this is best possible without additional conditions on $cal A$. Finally, we applied these results to study the $(p,q)$-spectral radius of $(r,s)$-uniform directed hypergraphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا