ترغب بنشر مسار تعليمي؟ اضغط هنا

So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification

131   0   0.0 ( 0 )
 نشر من قبل Xiaoxiang Zhu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named So2Sat LCZ42, which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from http://doi.org/10.14459/2018mp1483140.



قيم البحث

اقرأ أيضاً

This paper proposes a novel framework for fusing multi-temporal, multispectral satellite images and OpenStreetMap (OSM) data for the classification of local climate zones (LCZs). Feature stacking is the most commonly-used method of data fusion but do es not consider the heterogeneity of multimodal optical images and OSM data, which becomes its main drawback. The proposed framework processes two data sources separately and then combines them at the model level through two fusion models (the landuse fusion model and building fusion model), which aim to fuse optical images with landuse and buildings layers of OSM data, respectively. In addition, a new approach to detecting building incompleteness of OSM data is proposed. The proposed framework was trained and tested using data from the 2017 IEEE GRSS Data Fusion Contest, and further validated on one additional test set containing test samples which are manually labeled in Munich and New York. Experimental results have indicated that compared to the feature stacking-based baseline framework the proposed framework is effective in fusing optical images with OSM data for the classification of LCZs with high generalization capability on a large scale. The classification accuracy of the proposed framework outperforms the baseline framework by more than 6% and 2%, while testing on the test set of 2017 IEEE GRSS Data Fusion Contest and the additional test set, respectively. In addition, the proposed framework is less sensitive to spectral diversities of optical satellite images and thus achieves more stable classification performance than state-of-the art frameworks.
Perhaps surprisingly sewerage infrastructure is one of the most costly infrastructures in modern society. Sewer pipes are manually inspected to determine whether the pipes are defective. However, this process is limited by the number of qualified ins pectors and the time it takes to inspect a pipe. Automatization of this process is therefore of high interest. So far, the success of computer vision approaches for sewer defect classification has been limited when compared to the success in other fields mainly due to the lack of public datasets. To this end, in this work we present a large novel and publicly available multi-label classification dataset for image-based sewer defect classification called Sewer-ML. The Sewer-ML dataset consists of 1.3 million images annotated by professional sewer inspectors from three different utility companies across nine years. Together with the dataset, we also present a benchmark algorithm and a novel metric for assessing performance. The benchmark algorithm is a result of evaluating 12 state-of-the-art algorithms, six from the sewer defect classification domain and six from the multi-label classification domain, and combining the best performing algorithms. The novel metric is a class-importance weighted F2 score, $text{F}2_{text{CIW}}$, reflecting the economic impact of each class, used together with the normal pipe F1 score, $text{F}1_{text{Normal}}$. The benchmark algorithm achieves an $text{F}2_{text{CIW}}$ score of 55.11% and $text{F}1_{text{Normal}}$ score of 90.94%, leaving ample room for improvement on the Sewer-ML dataset. The code, models, and dataset are available at the project page https://vap.aau.dk/sewer-ml/
Deep learning techniques for point cloud data have demonstrated great potentials in solving classical problems in 3D computer vision such as 3D object classification and segmentation. Several recent 3D object classification methods have reported stat e-of-the-art performance on CAD model datasets such as ModelNet40 with high accuracy (~92%). Despite such impressive results, in this paper, we argue that object classification is still a challenging task when objects are framed with real-world settings. To prove this, we introduce ScanObjectNN, a new real-world point cloud object dataset based on scanned indoor scene data. From our comprehensive benchmark, we show that our dataset poses great challenges to existing point cloud classification techniques as objects from real-world scans are often cluttered with background and/or are partial due to occlusions. We identify three key open problems for point cloud object classification, and propose new point cloud classification neural networks that achieve state-of-the-art performance on classifying objects with cluttered background. Our dataset and code are publicly available in our project page https://hkust-vgd.github.io/scanobjectnn/.
Traffic signs are essential map features globally in the era of autonomous driving and smart cities. To develop accurate and robust algorithms for traffic sign detection and classification, a large-scale and diverse benchmark dataset is required. In this paper, we introduce a traffic sign benchmark dataset of 100K street-level images around the world that encapsulates diverse scenes, wide coverage of geographical locations, and varying weather and lighting conditions and covers more than 300 manually annotated traffic sign classes. The dataset includes 52K images that are fully annotated and 48K images that are partially annotated. This is the largest and the most diverse traffic sign dataset consisting of images from all over world with fine-grained annotations of traffic sign classes. We have run extensive experiments to establish strong baselines for both the detection and the classification tasks. In addition, we have verified that the diversity of this dataset enables effective transfer learning for existing large-scale benchmark datasets on traffic sign detection and classification. The dataset is freely available for academic research: https://www.mapillary.com/dataset/trafficsign.
Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As su ch, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا