ﻻ يوجد ملخص باللغة العربية
Deep learning has achieved substantial improvement on single-channel speech enhancement tasks. However, the performance of multi-layer perceptions (MLPs)-based methods is limited by the ability to capture the long-term effective history information. The recurrent neural networks (RNNs), e.g., long short-term memory (LSTM) model, are able to capture the long-term temporal dependencies, but come with the issues of the high latency and the complexity of training.To address these issues, the temporal convolutional network (TCN) was proposed to replace the RNNs in various sequence modeling tasks. In this paper we propose a novel TCN model that employs multi-branch structure, called multi-branch TCN (MB-TCN), for monaural speech enhancement.The MB-TCN exploits split-transform-aggregate design, which is expected to obtain strong representational power at a low computational complexity.Inspired by the TCN, the MB-TCN model incorporates one dimensional causal dilated CNN and residual learning to expand receptive fields for capturing long-term temporal contextual information.Our extensive experimental investigation suggests that the MB-TCNs outperform the residual long short-term memory networks (ResLSTMs), temporal convolutional networks (TCNs), and the CNN networks that employ dense aggregations in terms of speech intelligibility and quality, while providing superior parameter efficiency. Furthermore, our experimental results demonstrate that our proposed MB-TCN model is able to outperform multiple state-of-the-art deep learning-based speech enhancement methods in terms of five widely used objective metrics.
Multi-stage learning is an effective technique to invoke multiple deep-learning modules sequentially. This paper applies multi-stage learning to speech enhancement by using a multi-stage structure, where each stage comprises a self-attention (SA) blo
We explore the possibility of leveraging accelerometer data to perform speech enhancement in very noisy conditions. Although it is possible to only partially reconstruct users speech from the accelerometer, the latter provides a strong conditioning s
In this paper, in order to further deal with the performance degradation caused by ignoring the phase information in conventional speech enhancement systems, we proposed a temporal dilated convolutional generative adversarial network (TDCGAN) in the
For speech-related applications in IoT environments, identifying effective methods to handle interference noises and compress the amount of data in transmissions is essential to achieve high-quality services. In this study, we propose a novel multi-i
Naturalistic speech recordings usually contain speech signals from multiple speakers. This phenomenon can degrade the performance of speech technologies due to the complexity of tracing and recognizing individual speakers. In this study, we investiga