ﻻ يوجد ملخص باللغة العربية
Fully-Homomorphic Encryption (FHE) offers powerful capabilities by enabling secure offloading of both storage and computation, and recent innovations in schemes and implementations have made it all the more attractive. At the same time, FHE is notoriously hard to use with a very constrained programming model, a very unusual performance profile, and many cryptographic constraints. Existing compilers for FHE either target simpler but less efficient FHE schemes or only support specific domains where they can rely on expert-provided high-level runtimes to hide complications. This paper presents a new FHE language called Encrypted Vector Arithmetic (EVA), which includes an optimizing compiler that generates correct and secure FHE programs, while hiding all the complexities of the target FHE scheme. Bolstered by our optimizing compiler, programmers can develop efficient general-purpose FHE applications directly in EVA. For example, we have developed image processing applications using EVA, with a very few lines of code. EVA is designed to also work as an intermediate representation that can be a target for compiling higher-level domain-specific languages. To demonstrate this, we have re-targeted CHET, an existing domain-specific compiler for neural network inference, onto EVA. Due to the novel optimizations in EVA, its programs are on average 5.3x faster than those generated by CHET. We believe that EVA would enable a wider adoption of FHE by making it easier to develop FHE applications and domain-specific FHE compilers.
Fully Homomorphic Encryption (FHE) refers to a set of encryption schemes that allow computations to be applied directly on encrypted data without requiring a secret key. This enables novel application scenarios where a client can safely offload stora
Two-party secure function evaluation (SFE) has become significantly more feasible, even on resource-constrained devices, because of advances in server-aided computation systems. However, there are still bottlenecks, particularly in the input validati
Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degra
Cloud computing offers resource-constrained users big-volume data storage and energy-consuming complicated computation. However, owing to the lack of full trust in the cloud, the cloud users prefer privacy-preserving outsourced data computation with
With the increasing awareness of privacy protection and data fragmentation problem, federated learning has been emerging as a new paradigm of machine learning. Federated learning tends to utilize various privacy preserving mechanisms to protect the t