ترغب بنشر مسار تعليمي؟ اضغط هنا

On pairs of quadratic forms in five variables

98   0   0.0 ( 0 )
 نشر من قبل Mallesham Kummari
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Kummari Mallesham




اسأل ChatGPT حول البحث

In this article, we obtain an upper bound for the number of integral solutions, of given height, of system of two quadratic forms in five variables. Our bound is an improvement over the bound given by Henryk Iwaniec and Ritabrata Munshi in cite{H-R}.



قيم البحث

اقرأ أيضاً

138 - J. Bourgain , E. Fuchs 2011
Given a negative $D>-(log X)^{log 2-delta}$, we give a new upper bound on the number of square free integers $<X$ which are represented by some but not all forms of the genus of a primitive positive definite binary quadratic form $f$ of discriminant $D$. We also give an analogous upper bound for square free integers of the form $q+a<X$ where $q$ is prime and $ainmathbb Z$ is fixed. Combined with the 1/2-dimensional sieve of Iwaniec, this yields a lower bound on the number of such integers $q+a<X$ represented by a binary quadratic form of discriminant $D$, where $D$ is allowed to grow with $X$ as above. An immediate consequence of this, coming from recent work of the authors in [BF], is a lower bound on the number of primes which come up as curvatures in a given primitive integer Apollonian circle packing.
We consider systems $vec{F}(vec{x})$ of $R$ homogeneous forms of the same degree $d$ in $n$ variables with integral coefficients. If $ngeq d2^dR+R$ and the coefficients of $vec{F}$ lie in an explicit Zariski open set, we give a nonsingular Hasse prin ciple for the equation $vec{F}(vec{x})=vec{0}$, together with an asymptotic formula for the number of solutions to in integers of bounded height. This improves on the number of variables needed in previous results for general systems $vec{F}$ as soon as the number of equations $R$ is at least 2 and the degree $d$ is at least 4.
In his paper from 1996 on quadratic forms Heath-Brown developed a version of circle method to count points in the intersection of an unbounded quadric with a lattice of short period, if each point is given a weight. The weight function is assumed to be $C_0^infty$-smooth and to vanish near the singularity of the quadric. In out work we allow the weight function to be finitely smooth and not vanish near the singularity, and we give also an explicit dependence on the weight function.
161 - D.R. Heath-Brown 2009
It is shown that a system of $r$ quadratic forms over a ${mathfrak p}$-adic field has a non-trivial common zero as soon as the number of variables exceeds $4r$, providing that the residue class field has cardinality at least $(2r)^r$.
76 - Bing He 2020
Since the study by Jacobi and Hecke, Hecke-type series have received a lot of attention. Unlike such series associated with indefinite quadratic forms, identities on Hecke-type series associated with definite quadratic forms are quite rare in the lit erature. Motivated by the works of Liu, we first establish many parameterized identities with two parameters by employing different $q$-transformation formulas and then deduce various Hecke-type identities associated with definite quadratic forms by specializing the choice of these two parameters. As applications, we utilize some of these Hecke-type identities to establish families of inequalities for several partition functions. Our proofs heavily rely on some formulas from the work of Zhi-Guo Liu.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا