ﻻ يوجد ملخص باللغة العربية
Graphene nanoribbons (GNRs) synthesized using a bottom-up technique potentially enable future electronic devices owing to the tunable electronic structures depending on the well-defined width and edge geometry. For instance, armchair-edged GNRs (AGNRs) exhibit width-dependent bandgaps. However, the bandgaps of AGNRs synthesized experimentally thus far are relatively large, well above 1 eV. Such a large bandgap may deteriorate device performances due to large Schottky barriers and carrier effective masses. We describe the bottom-up synthesis of AGNRs with a smaller bandgap using dibromobenzene-based precursors. Two types of AGNRs with different widths of 17 and 13 carbon atoms were synthesized on Au(111), and their atomic and electronic structures were investigated by scanning probe microscopy and spectroscopy. We reveal that the 17-AGNRs has the smallest bandgap as well as the smallest electron/hole effective mass among bottom-up AGNRs reported thus far. The successful synthesis of 17-AGNRs is a significant step toward the development of GNR-based electronic devices.
Bottom-up approaches allow the production of ultra-narrow and atomically precise graphene nanoribbons (GNRs), with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab-initio simulations,
Electronic states at the ends of a narrow armchair nanoribbon give rise to a pair of non-locally entangled spins. We propose two experiments to probe these magnetic states, based on magnetometry and tunneling spectroscopy, in which correlation effect
By analytically constructing the matrix elements of an electron-phonon interaction for the $D$ band in the Raman spectra of armchair graphene nanoribbons, we show that pseudospin and momentum conservation result in (i) a $D$ band consisting of two co
Strain fold-like deformations on armchair graphene nanoribbons (AGNRs) can be properly engineered in experimental setups, and could lead to a new controlling tool for gaps and transport properties. Here, we analyze the electronic properties of folded
In graphene nanoribbons (GNRs), the lateral confinement of charge carriers opens a band gap, the key feature to enable novel graphene-based electronics. Successful synthesis of GNRs has triggered efforts to realize field-effect transistors (FETs) bas