Measurement-based feedback control of linear quantum stochastic systems with quadratic-exponential criteria


الملخص بالإنكليزية

This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quantum Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.

تحميل البحث