ﻻ يوجد ملخص باللغة العربية
This paper addresses neural network based post-processing for the state-of-the-art video coding standard, High Efficiency Video Coding (HEVC). We first propose a partition-aware Convolution Neural Network (CNN) that utilizes the partition information produced by the encoder to assist in the post-processing. In contrast to existing CNN-based approaches, which only take the decoded frame as input, the proposed approach considers the coding unit (CU) size information and combines it with the distorted decoded frame such that the artifacts introduced by HEVC are efficiently reduced. We further introduce an adaptive-switching neural network (ASN) that consists of multiple independent CNNs to adaptively handle the variations in content and distortion within compressed-video frames, providing further reduction in visual artifacts. Additionally, an iterative training procedure is proposed to train these independent CNNs attentively on different local patch-wise classes. Experiments on benchmark sequences demonstrate the effectiveness of our partition-aware and adaptive-switching neural networks. The source code can be found at http://min.sjtu.edu.cn/lwydemo/HEVCpostprocessing.html.
Ensemble weather predictions require statistical post-processing of systematic errors to obtain reliable and accurate probabilistic forecasts. Traditionally, this is accomplished with distributional regression models in which the parameters of a pred
Parameters of recent neural networks require a huge amount of memory. These parameters are used by neural networks to perform machine learning tasks when processing inputs. To speed up inference, we develop Partition Pruning, an innovative scheme to
The traditional image compressors, e.g., BPG and H.266, have achieved great image and video compression quality. Recently, Convolutional Neural Network has been used widely in image compression. We proposed an attention-based convolutional neural net
In this paper, we propose a partition-masked Convolution Neural Network (CNN) to achieve compressed-video enhancement for the state-of-the-art coding standard, High Efficiency Video Coding (HECV). More precisely, our method utilizes the partition inf
Analog computing hardwares, such as Processing-in-memory (PIM) accelerators, have gradually received more attention for accelerating the neural network computations. However, PIM accelerators often suffer from intrinsic noise in the physical componen