ترغب بنشر مسار تعليمي؟ اضغط هنا

The Windfall Clause: Distributing the Benefits of AI for the Common Good

501   0   0.0 ( 0 )
 نشر من قبل Cullen O'Keefe
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the transformative potential of AI has become increasingly salient as a matter of public and political interest, there has been growing discussion about the need to ensure that AI broadly benefits humanity. This in turn has spurred debate on the social responsibilities of large technology companies to serve the interests of society at large. In response, ethical principles and codes of conduct have been proposed to meet the escalating demand for this responsibility to be taken seriously. As yet, however, few institutional innovations have been suggested to translate this responsibility into legal commitments which apply to companies positioned to reap large financial gains from the development and use of AI. This paper offers one potentially attractive tool for addressing such issues: the Windfall Clause, which is an ex ante commitment by AI firms to donate a significant amount of any eventual extremely large profits. By this we mean an early commitment that profits that a firm could not earn without achieving fundamental, economically transformative breakthroughs in AI capabilities will be donated to benefit humanity broadly, with particular attention towards mitigating any downsides from deployment of windfall-generating AI.



قيم البحث

اقرأ أيضاً

AI for good (AI4G) projects involve developing and applying artificial intelligence (AI) based solutions to further goals in areas such as sustainability, health, humanitarian aid, and social justice. Developing and deploying such solutions must be d one in collaboration with partners who are experts in the domain in question and who already have experience in making progress towards such goals. Based on our experiences, we detail the different aspects of this type of collaboration broken down into four high-level categories: communication, data, modeling, and impact, and distill eleven takeaways to guide such projects in the future. We briefly describe two case studies to illustrate how some of these takeaways were applied in practice during our past collaborations.
Like any technology, AI systems come with inherent risks and potential benefits. It comes with potential disruption of established norms and methods of work, societal impacts and externalities. One may think of the adoption of technology as a form of social contract, which may evolve or fluctuate in time, scale, and impact. It is important to keep in mind that for AI, meeting the expectations of this social contract is critical, because recklessly driving the adoption and implementation of unsafe, irresponsible, or unethical AI systems may trigger serious backlash against industry and academia involved which could take decades to resolve, if not actually seriously harm society. For the purpose of this paper, we consider that a social contract arises when there is sufficient consensus within society to adopt and implement this new technology. As such, to enable a social contract to arise for the adoption and implementation of AI, developing: 1) A socially accepted purpose, through 2) A safe and responsible method, with 3) A socially aware level of risk involved, for 4) A socially beneficial outcome, is key.
AI researchers employ not only the scientific method, but also methodology from mathematics and engineering. However, the use of the scientific method - specifically hypothesis testing - in AI is typically conducted in service of engineering objectiv es. Growing interest in topics such as fairness and algorithmic bias show that engineering-focused questions only comprise a subset of the important questions about AI systems. This results in the AI Knowledge Gap: the number of unique AI systems grows faster than the number of studies that characterize these systems behavior. To close this gap, we argue that the study of AI could benefit from the greater inclusion of researchers who are well positioned to formulate and test hypotheses about the behavior of AI systems. We examine the barriers preventing social and behavioral scientists from conducting such studies. Our diagnosis suggests that accelerating the scientific study of AI systems requires new incentives for academia and industry, mediated by new tools and institutions. To address these needs, we propose a two-sided marketplace called TuringBox. On one side, AI contributors upload existing and novel algorithms to be studied scientifically by others. On the other side, AI examiners develop and post machine intelligence tasks designed to evaluate and characterize algorithmic behavior. We discuss this markets potential to democratize the scientific study of AI behavior, and thus narrow the AI Knowledge Gap.
In February 2020, the European Commission (EC) published a white paper entitled, On Artificial Intelligence - A European approach to excellence and trust. This paper outlines the ECs policy options for the promotion and adoption of artificial intelli gence (AI) in the European Union. The Montreal AI Ethics Institute (MAIEI) reviewed this paper and published a response addressing the ECs plans to build an ecosystem of excellence and an ecosystem of trust, as well as the safety and liability implications of AI, the internet of things (IoT), and robotics. MAIEI provides 15 recommendations in relation to the sections outlined above, including: 1) focus efforts on the research and innovation community, member states, and the private sector; 2) create alignment between trading partners policies and EU policies; 3) analyze the gaps in the ecosystem between theoretical frameworks and approaches to building trustworthy AI; 4) focus on coordination and policy alignment; 5) focus on mechanisms that promote private and secure sharing of data; 6) create a network of AI research excellence centres to strengthen the research and innovation community; 7) promote knowledge transfer and develop AI expertise through Digital Innovation Hubs; 8) add nuance to the discussion regarding the opacity of AI systems; 9) create a process for individuals to appeal an AI systems decision or output; 10) implement new rules and strengthen existing regulations; 11) ban the use of facial recognition technology; 12) hold all AI systems to similar standards and compulsory requirements; 13) ensure biometric identification systems fulfill the purpose for which they are implemented; 14) implement a voluntary labelling system for systems that are not considered high-risk; 15) appoint individuals to the oversight process who understand AI systems well and are able to communicate potential risks.
The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and te chnology of AI is developed in a humane manner, we must develop research publication norms that are informed by our growing understanding of AIs potential threats and use cases. Unfortunately, its difficult to create a set of publication norms for responsible AI because the field of AI is currently fragmented in terms of how this technology is researched, developed, funded, etc. To examine this challenge and find solutions, the Montreal AI Ethics Institute (MAIEI) co-hosted two public consultations with the Partnership on AI in May 2020. These meetups examined potential publication norms for responsible AI, with the goal of creating a clear set of recommendations and ways forward for publishers. In its submission, MAIEI provides six initial recommendations, these include: 1) create tools to navigate publication decisions, 2) offer a page number extension, 3) develop a network of peers, 4) require broad impact statements, 5) require the publication of expected results, and 6) revamp the peer-review process. After considering potential concerns regarding these recommendations, including constraining innovation and creating a black market for AI research, MAIEI outlines three ways forward for publishers, these include: 1) state clearly and consistently the need for established norms, 2) coordinate and build trust as a community, and 3) change the approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا