ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin and effect of hemispheric helicity imbalance in solar dynamo

186   0   0.0 ( 0 )
 نشر من قبل Valery Pipin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes into account the nonlinear effect of magnetic helicity conservation. We find that the evolution of the net magnetic helicity density, in other words, the magnetic helicity imbalance, on the surface follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $alpha$-effect and the helicity fluxes can inverse the causal relationship, i.e., the magnetic helicity imbalance or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.



قيم البحث

اقرأ أيضاً

372 - D. Sokoloff , H. Zhang , D. Moss 2012
We investigate to what extent the current helicity distribution observed in solar active regions is compatible with solar dynamo models. We use an advanced 2D mean-field dynamo model with dynamo action largely concentrated near the bottom of the conv ective zone, and dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic 2D mean-field dynamo model with simple algebraic alpha quenching only. Using these numerical models we obtain butterfly diagrams for both the small-scale current helicity and the large-scale magnetic helicity, and compare them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by $-A cdot B$ evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here $B$ and $A$ are respectively the dynamo generated mean magnetic field and its vector potential.
Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in N-S hemispheric cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. Th e observed limits on asymmetry show that hemispheric sunspot area production is no more than 20% asymmetric for cycles 12-23 and phase lags do not exceed 20% (2 yrs) of the total cycle period. Independent studies have found a long-term trend in phase values as one hemisphere leads the other for ~four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare the findings to results from a numerical simulation of solar convection recently produced with the EULAG-MHD model. This simulation spans 1600 yrs and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long and the toroidal bands remain at too high of latitudes, some solar-like aspects of hemispheric asymmetry are reproduced. The model reproduces the synchrony of polarity
A hemispheric preference in the dominant sign of magnetic helicity has been observed in numerous features in the solar atmosphere: i.e., left-handed/right-handed helicity in the northern/southern hemisphere. The relative importance of different physi cal processes which may contribute to the observed hemispheric sign preference (HSP) of magnetic helicity is still under debate. Here, we estimate magnetic helicity flux ($dH/dt$) across the photospheric surface for 4,802 samples of 1,105 unique active regions (ARs) that appeared over an 8-year period from 2010 to 2017 during solar cycle 24, using photospheric vector magnetic field observations by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The estimates of $dH/dt$ show that 63% and 65% of the investigated AR samples in the northern and southern hemispheres, respectively, follow the HSP. We also find a trend that the HSP of $dH/dt$ increases from ~50-60% up to ~70-80% as ARs (1) appear at the earlier inclining phase of the solar cycle or higher latitudes; (2) have larger values of $|dH/dt|$, the total unsigned magnetic flux, and the average plasma flow speed. These observational findings support the enhancement of the HSP mainly by the Coriolis force acting on a buoyantly rising and expanding flux tube through the turbulent convection zone. In addition, the differential rotation on the solar surface as well as the tachocline $alpha$-effect of flux-transport dynamo may reinforce the HSP for ARs at higher latitudes.
77 - V.V. Pipin 2020
In the paper we study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density pattern around the bipolar regions de pends on the configuration of the ambient large-scale magnetic field, and in general they show the quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time-latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions show two bands of sign for the density distribution in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to the surface differential rotation. Examining effect of helicity fluxes from the bipolar regions on the large-scale dynamo we find that its effect to the dynamo saturation is negligible.
We believe the Babcock--Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from 1970s, we use the polar faculae number data recorded by Sheeley (1991) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare with observational data. We find that the theoretically computed asymmetries of different cycles compare favourably with the observational data, the correlation coefficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle either from observational data or from theoretical calculation statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.38 and 0.60 respectively in observational data and theoretical simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا