ﻻ يوجد ملخص باللغة العربية
First-principles kinetic simulations are used to investigate magnetic field generation processes in expanding ablated plasmas relevant to laser-driven foils and hohlraums. In addition to Biermann-battery-generated magnetic fields, strong filamentary magnetic filaments are found to grow in the corona of single expanding plasma plumes; such filaments are observed to dominate Biermann fields at sufficiently large focal radius, reaching saturation values of $sim$ 100 T at National Ignition Facility-like drive conditions. The filamentary fields result from the ion Weibel instability driven by relative counterstreaming between the ablated ions and a sparse background population, which could be the result of a gas prefill in a hohlraum or laser pre-pulse. The ion-Weibel instability is robust with the inclusion of collisions and grows on a timescale of 100 ps, with a wavelength on the scale of 100-250 $mu$m, over a wide range of background population densities; the instability also gives rise to coherent density oscillations. These results are of particular interest to inertial confinement fusion experiments, where such field and density perturbations can modify heat-transport as well as laser propagation and absorption.
We present a particle-in-cell simulation of the generation of a collisionless turbulent shock in a dense plasma driven by an ultra-high-intensity laser pulse. From the linear analysis, we highlight the crucial role of the laser-heated and return-curr
We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emit
Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to
The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field f
We give theoretical analyses of the Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Both slab and liner configurations with finite thicknesses are dealt with in the WKB and the non-WKB approximations. Results show that instab