ﻻ يوجد ملخص باللغة العربية
With the wide deployment of digital image capturing equipment, the need of denoising to produce a crystal clear image from noisy capture environment has become indispensable. This work presents a novel image denoising method that can tackle both impulsive noise, such as salt and pepper noise (SAPN), and additive white Gaussian noise (AWGN), such as hot carrier noise from CMOS sensor, at the same time. We propose to use low-rank matrix approximation to form the basic denoising framework, as it has the advantage of preserving the spatial integrity of the image. To mitigate the SAPN, the original noise corrupted image is randomly sampled to produce sampled image sets. Low-rank matrix factorization method (LRMF) via alternating minimization denoising method is applied to all sampled images, and the resultant images are fused together via a wavelet fusion with hard threshold denoising. Since the sampled image sets have independent but identical noise property, the wavelet fusion serves as the effective mean to remove the AWGN, while the LRMF method suppress the SAPN. Simulation results are presented which vividly show the denoised images obtained by the proposed method can achieve crystal clear image with strong structural integrity and showing good performance in both subjective and objective metrics.
Hyperspectral image (HSI) denoising aims to restore clean HSI from the noise-contaminated one. Noise contamination can often be caused during data acquisition and conversion. In this paper, we propose a novel spatial-spectral total variation (SSTV) r
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information. During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim
Non-local self-similarity based low rank algorithms are the state-of-the-art methods for image denoising. In this paper, a new method is proposed by solving two issues: how to improve similar patches matching accuracy and build an appropriate low ran
The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also t