ترغب بنشر مسار تعليمي؟ اضغط هنا

Excellent Thermoelectric Performances of Pressure Synthesized ZnSe2

104   0   0.0 ( 0 )
 نشر من قبل Tiantian Jia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the lattice thermal conductivities of the pyrite-type ZnSe2 at pressures of 0 and 10 GPa using the linearized phonon Boltzmann transport equation. We obtain a very low value [0.69 W/(mK) at room temperature at 0 GPa], comparable to the best thermoelectric materials. The vibrational spectrum is characterized by the isolated high-frequency optical phonon modes due to the stretching of Se-Se dimers and low-frequency optical phonon modes due to the rotation of Zn atoms around these dimers. The low-frequency optical phonon modes are characterized by a strong anharmonicity and will substantially increase the three-phonon scattering space which suppress the thermal conductivity. Interestingly, two transverse acoustic phonon modes with similar frequencies and wave vectors have very different degrees of anharmonicity depending on their polarization. We relate this to the low thermal conductivity and show that the anharmonicities of the transverse acoustic phonon modes are connected to the corresponding change in the pyrite parameter, which can be interpreted as a descriptor for the local volume change. To determine the thermoelectric performance of ZnSe2, we also investigate its electrical transport properties. The results show that both p-type or n-type ZnSe2 can show promising electrical transport properties. We trace this back to the complex energy isosurfaces of both valence and conduction bands. The low thermal conductivities and promising electrical transport properties lead to a large thermoelectric figure of merit of ZnSe2 for both p-type and n-type doping.



قيم البحث

اقرأ أيضاً

Excellent thermoelectric performance in the out-of-layer n-doped SnSe has been observed experimentally (Chang et al., Science 360, 778-783 (2018)). However, a first-principles investigation of the dominant scattering mechanisms governing all thermoel ectric transport properties is lacking. In the present work, by applying extensive first-principles calculations of electron-phonon coupling associated with the calculation of the scattering by ionized impurities, we investigate the reasons behind the superior figure of merit as well as the enhancement of zT above 600 K in n-doped out-of-layer SnSe, as compared to p-doped SnSe with similar carrier densities. For the n-doped case, the relaxation time is dominated by ionized impurity scattering and increases with temperature, a feature that maintains the power factor at high values at higher temperatures and simultaneously causes the carrier thermal conductivity at zero electric current (k_el) to decrease faster for higher temperatures, leading to an ultrahigh-zT = 3.1 at 807 K. We rationalize the roles played by k_el and k^0 (the thermal conductivity due to carrier transport under isoelectrochemical conditions) in the determination of zT. Our results show the ratio between k^0 and the lattice thermal conductivity indeed corresponds to the upper limit for zT, whereas the difference between calculated zT and the upper limit is proportional to k_el.
160 - Yu Wu , Bowen Hou , Ying Chen 2020
The interactions between electrons and lattice vibrational modes play the key role in determining the carrier transport properties, thermoelectric performance and other physical quantities related to phonons in semiconductors. However, for two-dimens ional (2D) materials, the widely-used models for carrier transport only consider the interactions between electrons and some specific phonon modes, which usually leads to inaccruate predictions of electrons/phonons transport properties. In this work, comprehensive investigations on full electron-phonon couplings and their influences on carrier mobility and thermoelectric performances of 2D group-IV and V elemental monolayers were performed, and we also analyzed in details the selection rules on electron-phonon couplings using group-theory arguments. Our calculations revealed that, for the cases of shallow dopings where only intravalley scatterings are allowed, the contributions from optical phonon modes are significantly larger than those from acoustic phonon modes in group-IV elemental monolayers, and LA and some specific optical phonon modes contribute significantly to the total intravalley scatterings. When the doping increases and intervalley scatterings are allowed, the intervalley scatterings are much stronger than intravalley scatterings, and ZA/TA/LO phonon modes dominate the intervalley scatterings in monolayer Si, Ge and Sn. The dominant contributions to the total intervalley scatterings are ZA/TO in monolayer P, ZA/TO in monolayer As and TO/LO in monolayer Sb. Based on the thorough investigations on the full electron-phonon couplings, we predict accurately the carrier mobilities and thermoelectric figure of merits in these two elemental crystals, and reveal significant reductions when compared with the calculations based on the widely-used simplified model.
A first cobalt boride with the Co:B ratio below 1:1, Co5B16, was synthesized under high-pressure high-temperature conditions. It has a unique orthorhombic structure (space group Pmma, a = 19.1736(12), b = 2.9329(1), and c = 5.4886(2) {AA}, R1 (all da ta) = 0.037). The material is hard, paramagnetic, with a weak temperature dependence of magnetic susceptibility.
Electrotarnsport and magnetic properties of new phases in the system Cr-GaSb were studied. The samples were prepared by high-pressure (P=6-8 GPa) high-temperature treatment and identified by x-ray diffraction and scanning electron microscopy (SEM). O ne of the CrGa$_2$Sb$_2$ phases with an orthorhombic structure $Iba2$ has a combination of ferromagnetic and semiconductor properties and is potentially promising for spintronic applications. Another high-temperature phase is paramagnetic and identified as tetragonal $I4/mcm$.
Theoretical predictions of pressure-induced phase transformations often become long-standing enigmas because of limitations of contemporary available experimental possibilities. Hitherto the existence of a non-icosahedral boron allotrope has been one of them. Here we report on the first non-icosahedral boron allotrope, which we denoted as {zeta}-B, with the orthorhombic {alpha}-Ga-type structure (space group Cmce) synthesized in a diamond anvil cell at extreme high-pressure high-temperature conditions (115 GPa and 2100 K). The structure of {zeta}-B was solved using single-crystal synchrotron X-ray diffraction and its compressional behavior was studied in the range of very high pressures (115 GPa to 135 GPa). Experimental validation of theoretical predictions reveals the degree of our up-to-date comprehension of condensed matter and promotes further development of the solid state physics and chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا