ﻻ يوجد ملخص باللغة العربية
Ultrahigh energy protons and nuclei from extragalactic cosmic ray sources initiate intergalactic electromagnetic cascades, resulting in observable fluxes of $gamma$-rays in the GeV-TeV energy domain. The total spectrum of such cascade $gamma$-rays of hadronic nature is significantly harder than the one usually expected from blazars. The spectra of some sources known as extreme TeV blazars could be well-described by this intergalactic hadronic cascade model (IHCM). We calculate the shape of the observable point-like spectrum, as well as the observable angular distibution of $gamma$-rays, for the first time taking into account the effect of primary proton deflection in filaments and galaxy clusters of the extragalactic magnetic field assuming the model of Dolag et al. (2005). We present estimates of the width of the observable $gamma$-ray angular distribution derived from simple geometrical considerations. We also employ a hybrid code to compute the observable spectral and angular distributions of $gamma$-rays. The observable point-like spectrum at multi-TeV energies is much softer than the one averaged over all values of the observable angle. The presence of a high-energy cutoff in the observable spectra of extreme TeV blazars in the framework of the IHCM could significantly facilitate future searches of new physics processes that enhance the apparent $gamma$-ray transparency of the Universe (for instance, $gamma rightarrow ALP$ oscillations). The width of the observable angular distribution is greater than or comparable to the extent of the point spread function of next-generation $gamma$-ray telescopes.
In this paper we review the extragalactic propagation of ultrahigh energy cosmic-rays (UHECR). We present the different energy loss processes of protons and nuclei, and their expected influence on energy evolution of the UHECR spectrum and compositio
We briefly review contemporary extragalactic {gamma}-ray propagation models. It is shown that the Extragalactic Magnetic Field (EGMF) strength and structure are poorly known. Strict lower limits on the EGMF strength in voids are of order 10^{-17}--10
Blazars are potential candidates of cosmic-ray acceleration up to ultrahigh energies ($Egtrsim10^{18}$ eV). For an efficient cosmic-ray injection from blazars, $pgamma$ collisions with the extragalactic background light (EBL) and cosmic microwave bac
We explain the observed multiwavelength photon spectrum of a number of BL Lac objects detected at very high energy (VHE, $E gtrsim 30$ GeV), using a lepto-hadronic emission model. The one-zone leptonic emission is employed to fit the synchrotron peak
We study general implications of the IceCube observations in the energy range from $10^{6}$ GeV to $10^{10}$ GeV for the origin of extragalactic ultrahigh energy cosmic rays assuming that high energy neutrinos are generated by the photomeson producti