ترغب بنشر مسار تعليمي؟ اضغط هنا

The Statistics of Extended Debris Disks Measured with Gaia and Planck

64   0   0.0 ( 0 )
 نشر من قبل Jacob Nibauer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal emission from debris disks around stars has been measured using targeted and resolved observations. We present an alternative, likelihood-based approach in which temperature maps from the Planck CMB survey at 857 and 545 GHz are analyzed in conjunction with stellar positions from Gaia to estimate the fraction of stars hosting disks and the thermal emission from the disks. The debris disks are not resolved (or even necessarily detected individually) but their statistical properties and the correlations with stellar properties are measured for several thousand stars. We compare our findings with higher sensitivity surveys of smaller samples of stars. For dimmer stars, in particular K and M-dwarfs, we find about 10 percent of stars within 80 pc have emission consistent with debris disks. We also report on 80 candidate disks, the majority of which are not previously identified. We have previously constrained the properties of Exo-Oort clouds using Planck data -- with future CMB surveys both components can be measured for different stellar types, providing a new avenue to study the outer parts of planetary systems.



قيم البحث

اقرأ أيضاً

Aims: We aim to demonstrate that the Herschel ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the sur vey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods: We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results: We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme.
We present ALMA 1.3 mm (230 GHz) observations of the HD 32297 and HD 61005 debris disks, two of the most iconic debris disks due to their dramatic swept-back wings seen in scattered light images. These observations achieve sensitivities of 14 and 13 $mu$Jy beam$^{-1}$ for HD 32297 and HD 61005, respectively, and provide the highest resolution images of these two systems at millimeter wavelengths to date. By adopting a MCMC modeling approach, we determine that both disks are best described by a two-component model consisting of a broad ($Delta R/R> 0.4$) planetesimal belt with a rising surface density gradient, and a steeply falling outer halo aligned with the scattered light disk. The inner and outer edges of the planetesimal belt are located at $78.5pm8.1$ AU and $122pm3$ AU for HD 32297, and $41.9pm0.9$ AU and $67.0pm0.5$ AU for HD 61005. The halos extend to $440pm32$ AU and $188pm8$ AU, respectively. We also detect $^{12}$CO J$=2-1$ gas emission from HD 32297 co-located with the dust continuum. These new ALMA images provide observational evidence that larger, millimeter-sized grains may also populate the extended halos of these two disks previously thought to only be composed of small, micron-sized grains. We discuss the implications of these results for potential shaping and sculpting mechanisms of asymmetric debris disks.
The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1-1.5 resolution of th ree debris disks where the $^{12}$CO(2-1) rotational line was detected: HD131835, HD138813, and HD156623. We apply the iterative Lucy-Richardson deconvolution technique to the problem of circumstellar disks to derive disk geometries and surface brightness distributions of the gas. The derived disk parameters are used as input for thermochemical models to test both primordial and cometary scenarios for the origin of the gas. We favor a secondary origin for the gas in these disks and find that the CO gas masses ($sim 3times10^{-3}$ M$_{oplus}$) require production rates ($sim 5times 10^{-7}$ M$_{oplus}$~yr$^{-1}$) similar to those estimated for the bona-fide gas rich debris disk $beta$ Pic.
101 - Qiong Liu 2020
Debris disks around stars are considered as components of planetary systems. Constrain the dust properties of these disks can give crucial information to formation and evolution of planetary systems. As an all-sky survey, textit{InfRared Astronomical Satellite} (iras) gave great contribution to the debris disk searching which discovered the first debris disk host star (Vega). The iras-detected debris disk sample published by Rhee citep{rhe07} contains 146 stars with detailed information of dust properties. While the dust properties of 45 of them still can not be determined due to the limitations with the iras database (have iras detection at 60 $mu$m only). Therefore, using more sensitivity data of textit{Wide-field Infrared Survey Explorer} (wise), we can better characterize the sample stars: For the stars with iras detection at 60 $mu$m only, we refit the excessive flux densities and obtain the dust temperatures and fractional luminosities; While for the remaining stars with multi-bands iras detections, the dust properties are revised which show that the dust temperatures were over estimated in high temperatures band before. Moreover, we identify 17 stars with excesses at the wise 22 $mu$m which have smaller distribution of distance from Earth and higher fractional luminosities than the other stars without mid-infrared excess emission. Among them, 15 stars can be found in previous works.
283 - R. Nilsson 2009
The Beta Pictoris Moving Group is a nearby stellar association of young (12Myr) co-moving stars including the classical debris disk star beta Pictoris. Due to their proximity and youth they are excellent targets when searching for submillimetre emiss ion from cold, extended, dust components produced by collisions in Kuiper-Belt-like disks. They also allow an age independent study of debris disk properties as a function of other stellar parameters. We observed 7 infrared-excess stars in the Beta Pictoris Moving Group with the LABOCA bolometer array, operating at a central wavelength of 870 micron at the 12-m submillimetre telescope APEX. The main emission at these wavelengths comes from large, cold dust grains, which constitute the main part of the total dust mass, and hence, for an optically thin case, make better estimates on the total dust mass than earlier infrared observations. Fitting the spectral energy distribution with combined optical and infrared photometry gives information on the temperature and radial extent of the disk. From our sample, beta Pic, HD181327, and HD172555 were detected with at least 3-sigma certainty, while all others are below 2-sigma and considered non-detections. The image of beta Pic shows an offset flux density peak located near the south-west extension of the disk, similar to the one previously found by SCUBA at the JCMT. We present SED fits for detected sources and give an upper limit on the dust mass for undetected ones. We find a mean fractional dust luminosity f_dust=11x10^{-4} at t=12Myr, which together with recent data at 100Myr suggests an f_dust propto t^{-alpha} decline of the emitting dust, with alpha > 0.8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا