ﻻ يوجد ملخص باللغة العربية
We consider the convex hull of the perturbed point process comprised of $n$ i.i.d. points, each distributed as the sum of a uniform point on the unit sphere $S^{d-1}$ and a uniform point in the $d$-dimensional ball centered at the origin and of radius $n^{alpha}, alpha in (-infty, infty)$. This model, inspired by the smoothed complexity analysis introduced in computational geometry cite{DGGT,ST}, is a perturbation of the classical random polytope. We show that the perturbed point process, after rescaling, converges in the scaling limit to one of five Poisson point processes according to whether $alpha$ belongs to one of five regimes. The intensity measure of the limit Poisson point process undergoes a transition at the values $alpha = frac{-2} {d -1}$ and $alpha = frac{2} {d + 1}$ and it gives rise to four rescalings for the $k$-face functional on perturbed data. These rescalings are used to establish explicit expectation asymptotics for the number of $k$-dimensional faces of the convex hull of either perturbed binomial or Poisson data. In the case of Poisson input, we establish explicit variance asymptotics and a central limit theorem for the number of $k$-dimensional faces. Finally it is shown that the rescaled boundary of the convex hull of the perturbed point process converges to the boundary of a parabolic hull process.
Let $U_1,U_2,ldots$ be random points sampled uniformly and independently from the $d$-dimensional upper half-sphere. We show that, as $ntoinfty$, the $f$-vector of the $(d+1)$-dimensional convex cone $C_n$ generated by $U_1,ldots,U_n$ weakly converge
Let $xi_1,xi_2,ldots$ be a sequence of independent copies of a random vector in $mathbb R^d$ having an absolutely continuous distribution. Consider a random walk $S_i:=xi_1+cdots+xi_i$, and let $C_{n,d}:=text{conv}(0,S_1,S_2,ldots,S_n)$ be the convex
Let $X_1,ldots,X_n$ be independent random points that are distributed according to a probability measure on $mathbb{R}^d$ and let $P_n$ be the random convex hull generated by $X_1,ldots,X_n$ ($ngeq d+1$). Natural classes of probability distributions
Geometric properties of $N$ random points distributed independently and uniformly on the unit sphere $mathbb{S}^{d}subsetmathbb{R}^{d+1}$ with respect to surface area measure are obtained and several related conjectures are posed. In particular, we d
We consider a variant of a classical coverage process, the boolean model in $mathbb{R}^d$. Previous efforts have focused on convergence of the unoccupied region containing the origin to a well studied limit $C$. We study the intersection of sets cent