ﻻ يوجد ملخص باللغة العربية
State-of-the-art predictions for the mass of the lightest MSSM Higgs boson usually involve the resummation of higher-order logarithmic contributions obtained within an effective-field-theory (EFT) approach, often combined with a fixed-order calculation into a hybrid result. For the phenomenologically interesting case of a significant hierarchy between the gluino mass and the masses of the scalar top quarks the predictions suffer from large theoretical uncertainties related to non-decoupling power-enhanced gluino contributions in the EFT results employing the $overline{text{DR}}$ renormalisation scheme. We demonstrate that the theoretical predictions in the heavy gluino region are vastly improved by the introduction of a suitable renormalisation scheme for the EFT calculation. It is shown that within this scheme a recently proposed resummation of large gluino contributions is absorbed into the model parameters, resulting in reliable and numerically stable predictions in the heavy-gluino gluino region. We also discuss the integration of the results into the public code FeynHiggs.
The signal discovered in the Higgs searches at the LHC can be interpreted as the Higgs boson of the Standard Model as well as the light CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM). In this context the measured mass value,
We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-product
For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minima
A small Higgs mass parameter m_{h_u}^2 can be insensitive to various trial heavy stop masses, if a universal soft squared mass is assumed for the chiral superpartners and the Higgs boson at the grand unification (GUT) scale, and a focus point (FP) of
We discuss various improvements of the prediction for the light MSSM Higgs boson mass in the hybrid framework of the public code FeynHiggs, which combines fixed-order and effective field theory results. First, we discuss the resummation of logarithmi