ﻻ يوجد ملخص باللغة العربية
CTLearn is a new Python package under development that uses the deep learning technique to analyze data from imaging atmospheric Cherenkov telescope (IACT) arrays. IACTs use the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays, to form an image of the longitudinal development of the air shower on the camera plane. The spatial, temporal, and calorimetric information of the originating high-energy particle is then recorded electronically. The sensitivity of IACTs to astrophysical sources depends strongly on the efficient rejection of the background of much more numerous cosmic-ray showers. CTLearn includes modules for running machine learning models with TensorFlow, using pixel-wise camera data as input. Its high-level interface provides a configuration-file-based workflow to drive reproducible training and prediction. We illustrate the capabilities of CTLearn by presenting some results using IACT simulated data.
Deep learning techniques, namely convolutional neural networks (CNN), have previously been adapted to select gamma-ray events in the TAIGA experiment, having achieved a good quality of selection as compared with the conventional Hillas approach. Anot
Arrays of imaging atmospheric Cherenkov telescopes (IACT) are superb instruments to probe the very-high-energy gamma-ray sky. This type of telescope focuses the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays and co
We describe a straightforward modification of frequently invoked methods for the determination of the statistical significance of a gamma-ray signal observed in a counting process. A simple criterion is proposed to decide whether a set of measurement
In principle, diffractive optics, particularly Phase Fresnel Lenses (PFLs), offer the ability to construct large, diffraction-limited, and highly efficient X-ray/$gamma$-ray telescopes, leading to dramatic improvement in angular resolution and photon
Composite mirrors for gamma-ray astronomy have been developed to fulfill the specifications required for the next generation of Cherenkov telescopes represented by CTA (Cherenkov Telescope Array). In addition to the basic requirements on focus and re