ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Compositional Generalization: A Comprehensive Method on Realistic Data

66   0   0.0 ( 0 )
 نشر من قبل Marc van Zee
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

State-of-the-art machine learning methods exhibit limited compositional generalization. At the same time, there is a lack of realistic benchmarks that comprehensively measure this ability, which makes it challenging to find and evaluate improvements. We introduce a novel method to systematically construct such benchmarks by maximizing compound divergence while guaranteeing a small atom divergence between train and test sets, and we quantitatively compare this method to other approaches for creating compositional generalization benchmarks. We present a large and realistic natural language question answering dataset that is constructed according to this method, and we use it to analyze the compositional generalization ability of three machine learning architectures. We find that they fail to generalize compositionally and that there is a surprisingly strong negative correlation between compound divergence and accuracy. We also demonstrate how our method can be used to create new compositionality benchmarks on top of the existing SCAN dataset, which confirms these findings.



قيم البحث

اقرأ أيضاً

Image captioning models are usually evaluated on their ability to describe a held-out set of images, not on their ability to generalize to unseen concepts. We study the problem of compositional generalization, which measures how well a model composes unseen combinations of concepts when describing images. State-of-the-art image captioning models show poor generalization performance on this task. We propose a multi-task model to address the poor performance, that combines caption generation and image--sentence ranking, and uses a decoding mechanism that re-ranks the captions according their similarity to the image. This model is substantially better at generalizing to unseen combinations of concepts compared to state-of-the-art captioning models.
Compositional generalization is the ability to generalize systematically to a new data distribution by combining known components. Although humans seem to have a great ability to generalize compositionally, state-of-the-art neural models struggle to do so. In this work, we study compositional generalization in classification tasks and present two main contributions. First, we study ways to convert a natural language sequence-to-sequence dataset to a classification dataset that also requires compositional generalization. Second, we show that providing structural hints (specifically, providing parse trees and entity links as attention masks for a Transformer model) helps compositional generalization.
Distant and weak supervision allow to obtain large amounts of labeled training data quickly and cheaply, but these automatic annotations tend to contain a high amount of errors. A popular technique to overcome the negative effects of these noisy labe ls is noise modelling where the underlying noise process is modelled. In this work, we study the quality of these estimated noise models from the theoretical side by deriving the expected error of the noise model. Apart from evaluating the theoretical results on commonly used synthetic noise, we also publish NoisyNER, a new noisy label dataset from the NLP domain that was obtained through a realistic distant supervision technique. It provides seven sets of labels with differing noise patterns to evaluate different noise levels on the same instances. Parallel, clean labels are available making it possible to study scenarios where a small amount of gold-standard data can be leveraged. Our theoretical results and the corresponding experiments give insights into the factors that influence the noise model estimation like the noise distribution and the sampling technique.
Unintended bias in Machine Learning can manifest as systemic differences in performance for different demographic groups, potentially compounding existing challenges to fairness in society at large. In this paper, we introduce a suite of threshold-ag nostic metrics that provide a nuanced view of this unintended bias, by considering the various ways that a classifiers score distribution can vary across designated groups. We also introduce a large new test set of online comments with crowd-sourced annotations for identity references. We use this to show how our metrics can be used to find new and potentially subtle unintended bias in existing public models.
Good training data is a prerequisite to develop useful ML applications. However, in many domains existing data sets cannot be shared due to privacy regulations (e.g., from medical studies). This work investigates a simple yet unconventional approach for anonymized data synthesis to enable third parties to benefit from such private data. We explore the feasibility of learning implicitly from unrealistic, task-relevant stimuli, which are synthesized by exciting the neurons of a trained deep neural network (DNN). As such, neuronal excitation serves as a pseudo-generative model. The stimuli data is used to train new classification models. Furthermore, we extend this framework to inhibit representations that are associated with specific individuals. We use sleep monitoring data from both an open and a large closed clinical study and evaluate whether (1) end-users can create and successfully use customized classification models for sleep apnea detection, and (2) the identity of participants in the study is protected. Extensive comparative empirical investigation shows that different algorithms trained on the stimuli are able generalize successfully on the same task as the original model. However, architectural and algorithmic similarity between new and original models play an important role in performance. For similar architectures, the performance is close to that of using the true data (e.g., Accuracy difference of 0.56%, Kappa coefficient difference of 0.03-0.04). Further experiments show that the stimuli can to a large extent successfully anonymize participants of the clinical studies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا