ﻻ يوجد ملخص باللغة العربية
Continuous-time event sequences represent discrete events occurring in continuous time. Such sequences arise frequently in real-life. Usually we expect the sequences to follow some regular pattern over time. However, sometimes these patterns may be interrupted by unexpected absence or occurrences of events. Identification of these unexpected cases can be very important as they may point to abnormal situations that need human attention. In this work, we study and develop methods for detecting outliers in continuous-time event sequences, including unexpected absence and unexpected occurrences of events. Since the patterns that event sequences tend to follow may change in different contexts, we develop outlier detection methods based on point processes that can take context information into account. Our methods are based on Bayesian decision theory and hypothesis testing with theoretical guarantees. To test the performance of the methods, we conduct experiments on both synthetic data and real-world clinical data and show the effectiveness of the proposed methods.
Events in the world may be caused by other, unobserved events. We consider sequences of events in continuous time. Given a probability model of complete sequences, we propose particle smoothing---a form of sequential importance sampling---to impute t
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of buildin
Fairness and Outlier Detection (OD) are closely related, as it is exactly the goal of OD to spot rare, minority samples in a given population. However, when being a minority (as defined by protected variables, such as race/ethnicity/sex/age) does not
We study the estimation of policy gradients for continuous-time systems with known dynamics. By reframing policy learning in continuous-time, we show that it is possible construct a more efficient and accurate gradient estimator. The standard back-pr
Outliers are ubiquitous in modern data sets. Distance-based techniques are a popular non-parametric approach to outlier detection as they require no prior assumptions on the data generating distribution and are simple to implement. Scaling these tech