ترغب بنشر مسار تعليمي؟ اضغط هنا

VizWiz Dataset Browser: A Tool for Visualizing Machine Learning Datasets

142   0   0.0 ( 0 )
 نشر من قبل Nilavra Bhattacharya
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a visualization tool to exhaustively search and browse through a set of large-scale machine learning datasets. Built on the top of the VizWiz dataset, our dataset browser tool has the potential to support and enable a variety of qualitative and quantitative research, and open new directions for visualizing and researching with multimodal information. The tool is publicly available at https://vizwiz.org/browse.



قيم البحث

اقرأ أيضاً

Few-shot classification refers to learning a classifier for new classes given only a few examples. While a plethora of models have emerged to tackle it, we find the procedure and datasets that are used to assess their progress lacking. To address thi s limitation, we propose Meta-Dataset: a new benchmark for training and evaluating models that is large-scale, consists of diverse datasets, and presents more realistic tasks. We experiment with popular baselines and meta-learners on Meta-Dataset, along with a competitive method that we propose. We analyze performance as a function of various characteristics of test tasks and examine the models ability to leverage diverse training sources for improving their generalization. We also propose a new set of baselines for quantifying the benefit of meta-learning in Meta-Dataset. Our extensive experimentation has uncovered important research challenges and we hope to inspire work in these directions.
Few-shot dataset generalization is a challenging variant of the well-studied few-shot classification problem where a diverse training set of several datasets is given, for the purpose of training an adaptable model that can then learn classes from ne w datasets using only a few examples. To this end, we propose to utilize the diverse training set to construct a universal template: a partial model that can define a wide array of dataset-specialized models, by plugging in appropriate components. For each new few-shot classification problem, our approach therefore only requires inferring a small number of parameters to insert into the universal template. We design a separate network that produces an initialization of those parameters for each given task, and we then fine-tune its proposed initialization via a few steps of gradient descent. Our approach is more parameter-efficient, scalable and adaptable compared to previous methods, and achieves the state-of-the-art on the challenging Meta-Dataset benchmark.
Multimodal datasets contain an enormous amount of relational information, which grows exponentially with the introduction of new modalities. Learning representations in such a scenario is inherently complex due to the presence of multiple heterogeneo us information channels. These channels can encode both (a) inter-relations between the items of different modalities and (b) intra-relations between the items of the same modality. Encoding multimedia items into a continuous low-dimensional semantic space such that both types of relations are captured and preserved is extremely challenging, especially if the goal is a unified end-to-end learning framework. The two key challenges that need to be addressed are: 1) the framework must be able to merge complex intra and inter relations without losing any valuable information and 2) the learning model should be invariant to the addition of new and potentially very different modalities. In this paper, we propose a flexible framework which can scale to data streams from many modalities. To that end we introduce a hypergraph-based model for data representation and deploy Graph Convolutional Networks to fuse relational information within and across modalities. Our approach provides an efficient solution for distributing otherwise extremely computationally expensive or even unfeasible training processes across multiple-GPUs, without any sacrifices in accuracy. Moreover, adding new modalities to our model requires only an additional GPU unit keeping the computational time unchanged, which brings representation learning to truly multimodal datasets. We demonstrate the feasibility of our approach in the experiments on multimedia datasets featuring second, third and fourth order relations.
In this paper, we present BIKED, a dataset comprised of 4500 individually designed bicycle models sourced from hundreds of designers. We expect BIKED to enable a variety of data-driven design applications for bicycles and support the development of d ata-driven design methods. The dataset is comprised of a variety of design information including assembly images, component images, numerical design parameters, and class labels. In this paper, we first discuss the processing of the dataset, then highlight some prominent research questions that BIKED can help address. Of these questions, we further explore the following in detail: 1) Are there prominent gaps in the current bicycle market and design space? We explore the design space using unsupervised dimensionality reduction methods. 2) How does one identify the class of a bicycle and what factors play a key role in defining it? We address the bicycle classification task by training a multitude of classifiers using different forms of design data and identifying parameters of particular significance through permutation-based interpretability analysis. 3) How does one synthesize new bicycles using different representation methods? We consider numerous machine learning methods to generate new bicycle models as well as interpolate between and extrapolate from existing models using Variational Autoencoders. The dataset and code are available at http://decode.mit.edu/projects/biked/.
In recent years, large neural networks for natural language generation (NLG) have made leaps and bounds in their ability to generate fluent text. However, the tasks of evaluating quality differences between NLG systems and understanding how humans pe rceive the generated text remain both crucial and difficult. In this system demonstration, we present Real or Fake Text (RoFT), a website that tackles both of these challenges by inviting users to try their hand at detecting machine-generated text in a variety of domains. We introduce a novel evaluation task based on detecting the boundary at which a text passage that starts off human-written transitions to being machine-generated. We show preliminary results of using RoFT to evaluate detection of machine-generated news articles.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا