ﻻ يوجد ملخص باللغة العربية
We discuss gravitational waves from merging binaries using a Newtonian approach with some inputs from the Post-Newtonian formalism. We show that it is possible to understand the key features of the signal using fundamental physics and also demonstrate that an approximate calculation gives us the correct order of magnitude estimate of the parameters describing the merging binary system. We build on this analysis to understand the range for different types of sources for given detector sensitivity. We also consider known binary pulsar systems and discuss the expected gravitational wave signal from these.
In this review, I give a summary of the history of our understanding of gravitational waves and how compact binaries were used to transform their status from mathematical artefact to physical reality. I also describe the types of compact (stellar) bi
The Advanced LIGO and Virgo gravitational wave observatories have opened a new window with which to study the inspiral and mergers of binary compact objects. These observations are most powerful when coordinated with multi-messenger observations. Thi
The transformation of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is revisited. In contrast to the previous calculations of the similar effect, we
We summarize the observations of the spin periods of rapidly accreting neutron stars. If gravitational radiation is responsible for balancing the accretion torque at the observed spin frequencies of ~300 Hz, then the brightest of these systems make e
Some fraction of compact binaries that merge within a Hubble time may have formed from two massive stars in isolation. For this isolated-binary formation channel, binaries need to survive two supernova (SN) explosions in addition to surviving common-