ﻻ يوجد ملخص باللغة العربية
We describe the phase diagram of electrons on a fully connected lattice with random hopping, subject to a random Heisenberg spin exchange interactions between any pair of sites and a constraint of no double occupancy. A perturbative renormalization group analysis yields a critical point with fractionalized excitations at a non-zero critical value $p_c$ of the hole doping $p$ away from the half-filled insulator. We compute the renormalization group to two loops, but some exponents are obtained to all loop order. We argue that the critical point $p_c$ is flanked by confining phases: a disordered Fermi liquid with carrier density $1+p$ for $p>p_c$, and a metallic spin glass with carrier density $p$ for $p<p_c$. Additional evidence for the critical behavior is obtained from a large $M$ analysis of a model which extends the SU(2) spin symmetry to SU($M$). We discuss the relationship of the vicinity of this deconfined quantum critical point to key aspects of cuprate phenomenology.
We perform a numerical study of a spin-1/2 model with $mathbb{Z}_2 times mathbb{Z}_2$ symmetry in one dimension which demonstrates an interesting similarity to the physics of two-dimensional deconfined quantum critical points (DQCP). Specifically, we
Noethers theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noethers theorem at the deconfined quantum critical point (DQCP), which is the quantum phase transition bey
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension cor
We perform a renormalization group analysis of some important effective field theoretic models for deconfined spinons. We show that deconfined spinons are critical for an isotropic SU(N) Heisenberg antiferromagnet, if $N$ is large enough. We argue th
Deconfined quantum critical point was proposed as a second-order quantum phase transition between two broken symmetry phases beyond the Landau-Ginzburg-Wilson paradigm. However, numerical studies cannot completely rule out a weakly first-order transi