We give a detailed explicit computation of weights of Kontsevich graphs which arise from connection and curvature terms within the globalization picture for the special case of symplectic manifolds. We will show how the weights for the curvature graphs can be explicitly expressed in terms of the hypergeometric function as well as by a much simpler formula combining it with the explicit expression for the weights of its underlined connection graphs. Moreover, we consider the case of a cotangent bundle, which will simplify the curvature expression significantly.