ﻻ يوجد ملخص باللغة العربية
Recently, various natural algorithmic problems have been shown to be $exists mathbb{R}$-complete. The reduction relied in many cases on the $exists mathbb{R}$-completeness of the problem ETR-INV, which served as a useful intermediate problem. Often some strengthening and modification of ETR-INV was required. This lead to a cluttered situation where no paper included all the previous details. Here, we give a streamlined exposition in a self-contained manner. We also explain and prove various universality results regarding ETR-INV. These notes should not be seen as a research paper with new results. However, we do describe some refinements of earlier results which might be useful for future research. We plan to extend and update this exposition as seems fit.
We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cu
Ensuring fairness in computational problems has emerged as a $key$ topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It $is$ possible to incorporate fairness in computational problems from se
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contac
In analogy with the regularity lemma of Szemeredi, regularity lemmas for polynomials shown by Green and Tao (Contrib. Discrete Math. 2009) and by Kaufman and Lovett (FOCS 2008) modify a given collection of polynomials calF = {P_1,...,P_m} to a new co
To date, the only way to argue polynomial lower bounds for dynamic algorithms is via fine-grained complexity arguments. These arguments rely on strong assumptions about specific problems such as the Strong Exponential Time Hypothesis (SETH) and the O