ﻻ يوجد ملخص باللغة العربية
This is a self-contained purely algebraic treatment of desingularization of fields of fractions $mathbf{L}:=Q(mathbf{A})$ of $d$-dimensional domains of the form [mathbf{A}:=bar{mathbf{F}}[underline{x}]/langle b(underline{x})rangle] with a purely algebraic objective of uniquely describing $d$-dimensional valuations in terms of $d$ explicit (independent) local parameters and $1$ (dependent) local unit, for arbitrary dimension $d$ and arbitrary characteristic $p$. The desingularization will be given as a rooted tree with nodes labelled by domains $mathbf{A}_k$ (all with field of fractions $Q(mathbf{A}_k)=mathbf{L}$), sets $EQ_k$ and $INEQ_k$ of equality constraints and inequality constraints, and birational change-of-variables maps on $mathbf{L}$. The approach is based on d-dimensional discrete valuations and local monomial orderings to emphasize formal Laurent series expansions in $d$ independent variables. It is non-standard in its notation and perspective.
We prove that, analogous to the HK density function, (used for studying the Hilbert-Kunz multiplicity, the leading coefficient of the HK function), there exists a $beta$-density function $g_{R, {bf m}}:[0,infty)longrightarrow {mathbb R}$, where $(R,
We prove the existence of HK density function for a pair $(R, I)$, where $R$ is a ${mathbb N}$-graded domain of finite type over a perfect field and $Isubset R$ is a graded ideal of finite colength. This generalizes our earlier result where one prove
Using Macaulays correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for cactus varieties of the third Veronese embedding. We discuss
For a pair $(M, I)$, where $M$ is finitely generated graded module over a standard graded ring $R$ of dimension $d$, and $I$ is a graded ideal with $ell(R/I) < infty$, we introduce a new invariant $HKd(M, I)$ called the {em Hilbert-Kunz density funct
We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to nu