ترغب بنشر مسار تعليمي؟ اضغط هنا

IsoGeometric Approximations for Electromagnetic Problems in Axisymmetric Domains

117   0   0.0 ( 0 )
 نشر من قبل Abele Simona
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Abele Simona




اسأل ChatGPT حول البحث

We propose a numerical method for the solution of electromagnetic problems on axisymmetric domains, based on a combination of a spectral Fourier approximation in the azimuthal direction with an IsoGeometric Analysis (IGA) approach in the radial and axial directions. This combination allows to blend the flexibility and accuracy of IGA approaches with the advantages of a Fourier representation on axisymmetric domains. It also allows to reduce significantly the computational cost by decoupling of the computations required for each Fourier mode. We prove that the discrete approximation spaces employed functional space constitute a closed and exact de Rham sequence. Numerical simulations of relevant benchmarks confirm the high order convergence and other computational advantages of the proposed method.



قيم البحث

اقرأ أيضاً

An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Lapl ace-Beltrami equation requires only C0 continuity and is adopted to elucidate key features and properties of the isogeometric method using Catmull-Clark subdivision surfaces. Catmull-Clark subdivision bases are used to discretise both the geometry and the physical field. A fitting method generates control meshes to approximate any given geometry with Catmull-Clark subdivision surfaces. The performance of the Catmull-Clark subdivision method is compared to the conventional finite element method. Subdivision surfaces without extraordinary vertices show the optimal convergence rate. However, extraordinary vertices introduce error, which decreases the convergence rate. A comparative study shows the effect of the number and valences of the extraordinary vertices on accuracy and convergence. An adaptive quadrature scheme is shown to reduce the error.
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and no nlinear part -- such as the dynamic rupture along a fault with near fault plasticity -- and the high accuracy and computational efficiency of SBIM is used to simulate the exterior half spaces perfectly truncating all incident waves. The exact truncation allows us to greatly reduce the domain of spatial discretization compared to a traditional FEM approach, leading to considerable savings in computational cost and memory requirements. The coupling of FEM and SBIM is achieved by the exchange of traction and displacement boundary conditions at the computationally defined boundary. The method is suited to implementation on massively parallel computers. We validate the developed method by means of a benchmark problem. Three more complex examples with a low velocity fault zone, low velocity off-fault inclusion, and interaction of multiple faults, respectively, demonstrate the capability of the hybrid scheme in solving problems of very large sizes. Finally, we discuss potential applications of the hybrid method for problems in geophysics and engineering.
81 - Xinchao Jiang , Hu Wang , Yu li 2021
In this study, a novel physics-data-driven Bayesian method named Heat Conduction Equation assisted Bayesian Neural Network (HCE-BNN) is proposed. The HCE-BNN is constructed based on the Bayesian neural network, it is a physics-informed machine learni ng strategy. Compared with the existed pure data driven method, to acquire physical consistency and better performance of the data-driven model, the heat conduction equation is embedded into the loss function of the HCE-BNN as a regularization term. Hence, the proposed method can build a more reliable model by physical constraints with less data. The HCE-BNN can handle the forward and inverse problems consistently, that is, to infer unknown responses from known partial responses, or to identify boundary conditions or material parameters from known responses. Compared with the exact results, the test results demonstrate that the proposed method can be applied to both heat conduction forward and inverse problems successfully. In addition, the proposed method can be implemented with the noisy data and gives the corresponding uncertainty quantification for the solutions.
A hybrid surface integral equation partial differential equation (SIE-PDE) formulation without the boundary condition requirement is proposed to solve the electromagnetic problems. In the proposed formulation, the computational domain is decomposed i nto two emph{overlapping} domains: the SIE and PDE domains. In the SIE domain, complex structures with piecewise homogeneous media, e.g., highly conductive media, are included. An equivalent model for those structures is constructed through replacing them by the background medium and introducing a surface equivalent electric current density on an enclosed boundary to represent their electromagnetic effects. The remaining computational domain and homogeneous background medium replaced domain consist of the PDE domain, in which inhomogeneous or non-isotropic media are included. Through combining the surface equivalent electric current density and the inhomogeneous Helmholtz equation, a hybrid SIE-PDE formulation is derived. Unlike other hybrid formulations, where the transmission condition is usually used, no boundary conditions are required in the proposed SIE-PDE formulation, and it is mathematically equivalent to the original physical model. Through careful construction of basis functions to expand electric fields and the equivalent current density, the discretized formulation is compatible on the interface of the SIE and PDE domain. Finally, its accuracy and efficiency are validated through two numerical examples. Results show that the proposed SIE-PDE formulation can obtain accurate results including both near and far fields, and significant performance improvements in terms of CPU time and memory consumption compared with the FEM are achieved.
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete char acterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا