ﻻ يوجد ملخص باللغة العربية
We propose a numerical method for the solution of electromagnetic problems on axisymmetric domains, based on a combination of a spectral Fourier approximation in the azimuthal direction with an IsoGeometric Analysis (IGA) approach in the radial and axial directions. This combination allows to blend the flexibility and accuracy of IGA approaches with the advantages of a Fourier representation on axisymmetric domains. It also allows to reduce significantly the computational cost by decoupling of the computations required for each Fourier mode. We prove that the discrete approximation spaces employed functional space constitute a closed and exact de Rham sequence. Numerical simulations of relevant benchmarks confirm the high order convergence and other computational advantages of the proposed method.
An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Lapl
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and no
In this study, a novel physics-data-driven Bayesian method named Heat Conduction Equation assisted Bayesian Neural Network (HCE-BNN) is proposed. The HCE-BNN is constructed based on the Bayesian neural network, it is a physics-informed machine learni
A hybrid surface integral equation partial differential equation (SIE-PDE) formulation without the boundary condition requirement is proposed to solve the electromagnetic problems. In the proposed formulation, the computational domain is decomposed i
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete char