ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnostic of the spectral properties of Aquila X-1 by Insight-HXMT snapshots during the early propeller phase

57   0   0.0 ( 0 )
 نشر من قبل Can Gungor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the 2018 outburst of Aql X-1 via the monitor of all sky X-ray image (MAXI) data. We show that the outburst starting in February 2018 is a member of short-low class in the frame of outburst duration and the peak count rate although the outburst morphology is slightly different from the other fast-rise-exponential-decay (FRED) type outbursts with a milder rising stage. We study the partial accretion in the weak propeller stage of Aql X-1 via the MAXI data of the 2018 outburst. We report on the spectral analysis of 3 observations of Aquila X-1 obtained by Insight - hard X-ray modulation telescope (Insight-HXMT) during the late decay stage of the 2018 outburst. We discuss that the data taken by Insight-HXMT is just after the transition to the weak propeller stage. Our analysis shows the necessity of a comptonization component to take into account the existence of an electron cloud resulting photons partly up-scattered.



قيم البحث

اقرأ أيضاً

120 - S.M. Jia , Q.C. Bu , J.L. Qu 2019
We present a detailed timing study of the brightest persistent X-ray source Sco X-1 using the data collected by the Hard X-ray Modulation Telescope ($Insight$-HXMT) from July 2017 to August 2018. A complete $Z$-track hardness-intensity diagram (HID) is obtained. The normal branch oscillations (NBOs) at $sim$ 6 Hz in the lower part of the normal branch (NB) and the flare branch oscillations (FBOs) at $sim$ 16 Hz in the beginning part of the flaring branch (FB) are found in observations with the Low Energy X-ray Telescope (LE) and the Medium Energy X-ray Telescope (ME) of $Insight$-HXMT, while the horizontal branch oscillations (HBOs) at $sim$ 40 Hz and the kilohertz quasi-periodic oscillations (kHz QPOs) at $sim$ 800 Hz are found simultaneously up to 60 keV for the first time on the horizontal branch (HB) by the High Energy X-ray Telescope (HE) and ME. We find that for all types of the observed QPOs, the centroid frequencies are independent of energy, while the root mean square (rms) increases with energy; the centroid frequencies of both the HBOs and kHz QPOs increase along the $Z$-track from the top to the bottom of the HB; and the NBOs show soft phase lags increasing with energy. A continuous QPO transition from the FB to NB in $sim$ 200 s are also detected. Our results indicate that the non-thermal emission is the origin of all types of QPOs, the innermost region of the accretion disk is non-thermal in nature, and the corona is nonhomogeneous geometrically.
99 - Y. Z. Ding , W. Wang (1 2021
In this paper, we presented a detailed timing analysis of a prominent outburst of 4U 0115+63 detected by textit{Insight}-HXMT in 2017 August. The spin period of the neutron star was determined to be $3.61398pm 0.00002$ s at MJD 57978. We measured the period variability and extract the orbital elements of the binary system. The angle of periastron evolved with a rate of $0.048pm0.003$ $yr^{-1}$. The light curves are folded to sketch the pulse profiles in different energy ranges. A multi-peak structure in 1-10 keV is clearly illustrated. We introduced wavelet analysis into our data analysis procedures to study QPO signals and perform a detailed wavelet analysis in many different energy ranges. Through the wavelet spectra, we report the discovery of a QPO at the frequency $sim 10$ mHz. In addition, the X-ray light curves showed multiple QPOs in the period of $sim 16-32 $ s and $sim 67- 200 $ s. We found that the $sim100$ s QPO was significant in most of the observations and energies. There exist positive relations between X-ray luminosity and their Q-factors and S-factors, while the QPO periods have no correlation with X-ray luminosity. In wavelet phase maps, we found that the pulse phase of $sim 67- 200 $ s QPO drifting frequently while the $sim 16-32 $ s QPO scarcely drifting. The dissipation of oscillations from high energy to low energy was also observed. These features of QPOs in 4U 0115+63 provide new challenge to our understanding of their physical origins.
90 - P. Zhang , W. Wang , Y. Su 2021
The X9.3 flare SOL20170906T11:55 was observed by the CsI detector aboard the first Chinese X-ray observatory Hard X-ray Modulation telescope (Insight-HXMT). By using wavelets method, we report about 22 s quasiperiodic pulsations(QPPs) during the impu lsive phase. And the spectra from 100 keV to 800 keV showed the evolution with the gamma-ray flux, of a power-law photon index from $sim 1.8$ before the peak, $sim 2.0$ around the flare peak, to $sim 1.8$ again. The gyrosynchrotron microwave spectral analysis reveals a $36.6 pm 0.6 arcsec$ radius gyrosynchrotron source with mean transverse magnetic field around 608.2 Gauss, and the penetrated $ge$ 10 keV non-thermal electron density is about $10^{6.7} mathrm{cm}^{-3}$ at peak time. The magnetic field strength followed the evolution of high-frequency radio flux. Further gyrosynchrotron source modeling analysis implies that there exists a quite steady gyrosynchrotron source, the non-thermal electron density and transverse magnetic field evolution are similar to higher-frequency light curves. The temporally spectral analysis reveals that those non-thermal electrons are accelerated by repeated magnetic reconnection, likely from a lower corona source.
The evidences for the influence of thermonuclear (type-I) X-ray bursts upon the surrounding environments in neutron star low-mass X-ray binaries (LMXB) were detected previously via spectral and timing analyses. Benefitting from a broad energy coverag e of Insight-HXMT, we analyze one photospheric radius expansion (PRE) burst, and find an emission excess at soft X-rays. Our spectral analysis shows that, such an excess is not likely relevant to the disk reflection induced by the burst emission and can be attributed to an enhanced pre-burst/persistent emission. We find that the burst and enhanced persistent emissions sum up to exceed Eddington luminosity by $sim$ 40 percentages. We speculate that the enhanced emission is from a region beyond the PRE radius, or through the Comptonization of the corona.
We report on analysis of observations of the bright transient X-ray pulsar src obtained during its 2017-2018 giant outburst with Insight-HXMT, emph{NuSTAR}, and textit{Swift} observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا