We prove a general equivalence statement between the notions of models and modelled distributions over a regularity structure, and paracontrolled systems indexed by the regularity structure. This takes in particular the form of a parametrisation of the set of models over a regularity structure by the set of reference functions used in the paracontrolled representation of these objects. A number of consequences are emphasized. The construction of a modelled distribution from a paracontrolled system is explicit, and takes a particularly simple form in the case of the regularity structures introduced by Bruned, Hairer and Zambotti for the study of singular stochastic partial differential equations.