ﻻ يوجد ملخص باللغة العربية
Automatic recognition of Urdu handwritten digits and characters, is a challenging task. It has applications in postal address reading, banks cheque processing, and digitization and preservation of handwritten manuscripts from old ages. While there exists a significant work for automatic recognition of handwritten English characters and other major languages of the world, the work done for Urdu lan-guage is extremely insufficient. This paper has two goals. Firstly, we introduce a pioneer dataset for handwritten digits and characters of Urdu, containing samples from more than 900 individuals. Secondly, we report results for automatic recog-nition of handwritten digits and characters as achieved by using deep auto-encoder network and convolutional neural network. More specifically, we use a two-layer and a three-layer deep autoencoder network and convolutional neural network and evaluate the two frameworks in terms of recognition accuracy. The proposed framework of deep autoencoder can successfully recognize digits and characters with an accuracy of 97% for digits only, 81% for characters only and 82% for both digits and characters simultaneously. In comparison, the framework of convolutional neural network has accuracy of 96.7% for digits only, 86.5% for characters only and 82.7% for both digits and characters simultaneously. These frameworks can serve as baselines for future research on Urdu handwritten text.
The recognition of cursive script is regarded as a subtle task in optical character recognition due to its varied representation. Every cursive script has different nature and associated challenges. As Urdu is one of cursive language that is derived
CNN model is a popular method for imagery analysis, so it could be utilized to recognize handwritten digits based on MNIST datasets. For higher recognition accuracy, various CNN models with different fully connected layer sizes are exploited to figur
This paper describes the details of Sighthounds fully automated age, gender and emotion recognition system. The backbone of our system consists of several deep convolutional neural networks that are not only computationally inexpensive, but also prov
Handwritten character recognition (HCR) is a challenging learning problem in pattern recognition, mainly due to similarity in structure of characters, different handwriting styles, noisy datasets and a large variety of languages and scripts. HCR prob
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con