ﻻ يوجد ملخص باللغة العربية
Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG towards x-ray energies has been hampered by ionization-induced plasma generation impeding the coherent buildup of high-harmonic radiation. Recently, it has been shown that these limitations can be overcome in the so-called overdriven regime where ionization loss and plasma dispersion strongly modify the driving laser pulse over small distances, albeit without demonstrating IAPs. Here, we report on experiments comparing the generation of IAPs in argon and neon at 80 eV via attosecond streaking measurements. Contrasting our experimental results with numerical simulations, we conclude that IAPs in argon are generated through ionization-induced transient phase-matching gating effective over distances on the order of 100 $mu$m. We show that the decay of the intensity and blue-shift due to plasma defocussing are crucial for allowing phase-matching close to the XUV cutoff at high plasma densities. We perform simulations for different gases and wavelengths and show that the mechanism is important for the phase-matching of long-wavelength, tightly-focused laser beams in high-pressure gas targets, which are currently being employed for scaling isolated attosecond pulse generation to x-ray photon energies.
In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regim
The ongoing development of intense high-harmonic generation (HHG) sources has recently enabled highly nonlinear ionization of atoms by the absorption of at least 10 extreme-ultraviolet (XUV) photons within a single atom [Senfftleben textit{et al.}, a
We analyze the role of the difference between the central frequencies of the spectral distributions of the vector potential and the electric field of a short laser pulse. The frequency shift arises when the electric field is determined as the derivat
Sources of intense, ultra-short electromagnetic pulses enable applications such as attosecond pulse generation, control of electron motion in solids and the observation of reaction dynamics at the electronic level. For such applications both high-int
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest attosecond (as) pulses have been produced only in the extreme ultraviolet (EUV) region o