ﻻ يوجد ملخص باللغة العربية
Generative models of graphs are well-known, but many existing models are limited in scalability and expressivity. We present a novel sequential graphical variational autoencoder operating directly on graphical representations of data. In our model, the encoding and decoding of a graph as is framed as a sequential deconstruction and construction process, respectively, enabling the the learning of a latent space. Experiments on a cycle dataset show promise, but highlight the need for a relaxation of the distribution over node permutations.
Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of
Graph Neural Networks (GNNs) and Variational Autoencoders (VAEs) have been widely used in modeling and generating graphs with latent factors. However, there is no clear explanation of what these latent factors are and why they perform well. In this w
This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior for a continuous latent variable that exhibits the characteristic of the categorical probabilities. To infer the parameters of DirVAE, we utilize the stochastic gr
Variation Autoencoder (VAE) has become a powerful tool in modeling the non-linear generative process of data from a low-dimensional latent space. Recently, several studies have proposed to use VAE for unsupervised clustering by using mixture models t
In the field of machine learning, it is still a critical issue to identify and supervise the learned representation without manually intervening or intuition assistance to extract useful knowledge or serve for the downstream tasks. In this work, we f