ترغب بنشر مسار تعليمي؟ اضغط هنا

Spurious Acceleration Noise on the LISA Spacecraft due to Solar Activity

145   0   0.0 ( 0 )
 نشر من قبل Marco Cavagli\\`a
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One source of noise for the Laser Interferometer Space Antenna (LISA) will be time-varying changes of the space environment in the form of solar wind particles and photon pressure from fluctuating solar irradiance. The approximate magnitude of these effects can be estimated from the average properties of the solar wind and the solar irradiance. We use data taken by the ACE (Advanced Compton Explorer) satellite and the VIRGO (Variability of solar IRradiance and Gravity Oscillations) instrument on the SOHO satellite over an entire solar cycle to calculate the forces due to solar wind and photon pressure irradiance on the LISA spacecraft. We produce a realistic model of the effects of these environmental noise sources and their variation over the expected course of the LISA mission.



قيم البحث

اقرأ أيضاً

In a space based gravitational wave antenna like LISA, involving long light paths linking distant emitter/receiver spacecrafts, signal detection amounts to measuring the light-distance variationsthrough a phase change at the receiver. This is why spu rious phase fluctuations due to various mechanical/thermal effects must be carefully studied. We consider here a possible pointing jitter in the light beam sent from the emitter. We show how the resulting phase noise depends on the quality of the wavefront due to the incident beam impinging on the telescope and due to the imperfections of the telescope itself. Namely, we numerically assess the crossed influence of various defects (aberrations and astigmatisms), inherent to a real telescope with pointing fluctuations.
During the On-Station Thermal Test campaign of the LISA Pathfinder the data and diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature me asurement system, obtaining temperature noise around $10^{-4},{rm K}, {rm Hz}^{-1/2}$ in the frequency band of $1-30;{rm mHz}$. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) Core Assembly to the satellite structure allowed to experimentally estimate for the first time the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellites main instrument. Such contribution was found to be at $10^{-12},{rm m}, {rm Hz}^{-1/2}$, a factor of 30 below the measured noise at the lower end of the measurement bandwidth ($1,{rm mHz}$).
160 - M. Armano , H. Audley , J. Baird 2020
LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LISA Pathfinder carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 $ rm nT Hz^{-1/2}$ from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LISA Pathfinder operations. We characterise the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 $mu$Hz, where we measure values around 200 $ rm nT Hz^{-1/2}$ and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterise the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.
The science objectives of the LISA mission have been defined under the implicit assumption of a 4 yr continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $approx 0.75$, which woul d reduce the effective span of usable data to 3 yr. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 yr of mission operations is recommended.
We study the image formation process with the solar gravitational lens (SGL) in the case of an extended, resolved source. An imaging telescope, modeled as a convex lens, is positioned within the image cylinder formed by the light received from the so urce. In the strong interference region of the SGL, this light is greatly amplified, forming the Einstein ring around the Sun, representing a distorted image of the extended source. We study the intensity distribution within the Einstein ring observed in the focal plane of the convex lens. For any particular telescope position in the image plane, we model light received from the resolved source as a combination of two signals: light received from the directly imaged region of the source and light from the rest of the source. We also consider the case when the telescope points away from the extended source or, equivalently, it observes light from sources in sky positions that are some distance away from the extended source, but still in its proximity. At even larger distances from the optical axis, in the weak interference or geometric optics regions, our approach recovers known models related to microlensing, but now obtained via the wave-optical treatment. We then derive the power of the signal and related photon fluxes within the annulus that contains the Einstein ring of the extended source, as seen by the imaging telescope. We discuss the properties of the deconvolution process, especially its effects on noise in the recovered image. We compare anticipated signals from realistic exoplanetary targets against estimates of noise from the solar corona and estimate integration times needed for the recovery of high-quality images of faint sources. The results demonstrate that the SGL offers a unique, realistic capability to obtain resolved images of exoplanets in our galactic neighborhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا